Maison développement back-end Tutoriel Python python implémente l'algorithme d'arbre de décision

python implémente l'algorithme d'arbre de décision

Apr 19, 2018 pm 04:50 PM
python

L'exemple de cet article décrit l'implémentation de l'algorithme d'arbre de décision en python. Partagez-le avec tout le monde pour votre référence, les détails sont les suivants :

from sklearn.feature_extraction import DictVectorizer
import csv
from sklearn import tree
from sklearn import preprocessing
from sklearn.externals.six import StringIO

# 读取csv数据,并将数据和特征值存入字典和类标签列表
allElectronicsData = open(r'AllElectronics.csv', 'rt')
reader = csv.reader(allElectronicsData)
headers = next(reader)
# 原代码中用的是:
# headers = reader.next()
# 这句代码应该是之前的版本用的,现在已经更新了没有next这个函数

# print(headers)

featureList = []
labelList = []

for row in reader:
    labelList.append(row[len(row) - 1])
    rowDict = {}
    for i in range(1, len(row) - 1):
        rowDict[headers[i]] = row[i]
    featureList.append(rowDict)

# print(featureList)


# 将特征值矢量化,代表将各种参数进行矢量化
vec = DictVectorizer()
dummyX = vec.fit_transform(featureList).toarray()

# print("dummyX: " + str(dummyX))
# print(vec.get_feature_names())

# print("labelList: " + str(labelList))

# 将类标签列表矢量化,就是最后的结果
lb = preprocessing.LabelBinarizer()
dummyY = lb.fit_transform(labelList)
# print("dummyY: " + str(dummyY))

# 使用决策树进行分类
clf = tree.DecisionTreeClassifier()
# clf = tree.DecisionTreeClassifier(criterion = 'entropy')
clf = clf.fit(dummyX, dummyY)
# print("clf: " + str(clf))

# 将模型进行可视化
with open("allElectrionicInformationOri.dot", 'w') as f:
    f = tree.export_graphviz(clf, feature_names = vec.get_feature_names(), out_file = f)

oneRowX = dummyX[0, :]
# print("oneRowX: " + str(oneRowX))

# 接下来改变一些数据进行预测
newRowX = oneRowX

newRowX[0] = 0
newRowX[1] = 1
print("newRowX: " + str(newRowX))

predictedY = clf.predict(newRowX.reshape(1, -1))  # 预测的结果需要加上后面的reshape(1, -1),不然会
# 报错:
# ValueError: Expected 2D array, got 1D array instead:
# array=[0. 1. 1. 0. 1. 1. 0. 0. 1. 0.].
# Reshape your data either using array.reshape(-1, 1)
# if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
print("预测的结果为: " + str(predictedY))
Copier après la connexion


Catégorie le pouvoir d'achat du personnel pour classer les projets dans le processus final. , vous pouvez également faire certaines prédictions sur les résultats. Voir le code ci-dessus, il y a quelques avantages et inconvénients

Avantages de l'algorithme de l'arbre de décision :

 1) Simple et intuitif, l'arbre de décision généré est très intuitif.

2) Il n'y a fondamentalement pas besoin de prétraitement, pas besoin de normaliser à l'avance et de gérer les valeurs manquantes.

 3) Le coût de l'utilisation de la prédiction de l'arbre de décision est de >g2m)O(log2m). m est le nombre d'échantillons.  4) Peut gérer à la fois des valeurs discrètes et des valeurs continues. De nombreux algorithmes se concentrent uniquement sur des valeurs discrètes ou des valeurs continues. 5) Peut gérer le problème de classification de la sortie multidimensionnelle.  6) Par rapport aux modèles de classification par boîte noire tels que les réseaux de neurones, les arbres de décision peuvent être bien expliqués logiquement  7) L'élagage par validation croisée peut être utilisé pour sélectionner des modèles, améliorant ainsi la capacité de généralisation . 8) Il a une bonne tolérance aux pannes pour les points anormaux et une grande robustesse.

Examinons les lacunes de l'algorithme de l'arbre de décision :

1) L'algorithme de l'arbre de décision est très facile à surajuster, ce qui entraîne une faible capacité de généralisation. Cela peut être amélioré en définissant le nombre minimum d'échantillons pour les nœuds et en limitant la profondeur de l'arbre de décision.

2) Un léger changement dans l'échantillon entraînera des changements drastiques dans la structure arborescente. Ce problème peut être résolu grâce à des méthodes telles que l’apprentissage d’ensemble.

3) Trouver l'arbre de décision optimal est un problème NP-difficile. Nous utilisons généralement des méthodes heuristiques et pouvons facilement tomber dans des optima locaux. Cela peut être amélioré grâce à des méthodes telles que l’apprentissage d’ensemble.

4) Les arbres de décision sont difficiles à apprendre pour certaines relations complexes, telles que XOR. Il n'y a aucun moyen de contourner ce problème. Généralement, cette relation peut être résolue en utilisant la méthode de classification des réseaux neuronaux.

5) Si la proportion d'échantillon de certaines fonctionnalités est trop grande, l'arbre de décision généré aura tendance à être biaisé en faveur de ces fonctionnalités. Cela peut être amélioré en ajustant les poids des échantillons.


Recommandations associées :

Explication détaillée de l'arbre de décision des dix principaux algorithmes d'exploration de données

Algorithme d'arbre de décision

Principes et cas de l'algorithme d'arbre de décision

Implémentation de l'algorithme d'arbre de décision

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: différents paradigmes expliqués PHP et Python: différents paradigmes expliqués Apr 18, 2025 am 12:26 AM

PHP est principalement la programmation procédurale, mais prend également en charge la programmation orientée objet (POO); Python prend en charge une variété de paradigmes, y compris la POO, la programmation fonctionnelle et procédurale. PHP convient au développement Web, et Python convient à une variété d'applications telles que l'analyse des données et l'apprentissage automatique.

Choisir entre PHP et Python: un guide Choisir entre PHP et Python: un guide Apr 18, 2025 am 12:24 AM

PHP convient au développement Web et au prototypage rapide, et Python convient à la science des données et à l'apprentissage automatique. 1.Php est utilisé pour le développement Web dynamique, avec une syntaxe simple et adapté pour un développement rapide. 2. Python a une syntaxe concise, convient à plusieurs champs et a un écosystème de bibliothèque solide.

Le code Visual Studio peut-il être utilisé dans Python Le code Visual Studio peut-il être utilisé dans Python Apr 15, 2025 pm 08:18 PM

VS Code peut être utilisé pour écrire Python et fournit de nombreuses fonctionnalités qui en font un outil idéal pour développer des applications Python. Il permet aux utilisateurs de: installer des extensions Python pour obtenir des fonctions telles que la réalisation du code, la mise en évidence de la syntaxe et le débogage. Utilisez le débogueur pour suivre le code étape par étape, trouver et corriger les erreurs. Intégrez Git pour le contrôle de version. Utilisez des outils de mise en forme de code pour maintenir la cohérence du code. Utilisez l'outil de liaison pour repérer les problèmes potentiels à l'avance.

Peut-on exécuter le code sous Windows 8 Peut-on exécuter le code sous Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code peut fonctionner sur Windows 8, mais l'expérience peut ne pas être excellente. Assurez-vous d'abord que le système a été mis à jour sur le dernier correctif, puis téléchargez le package d'installation VS Code qui correspond à l'architecture du système et l'installez comme invité. Après l'installation, sachez que certaines extensions peuvent être incompatibles avec Windows 8 et doivent rechercher des extensions alternatives ou utiliser de nouveaux systèmes Windows dans une machine virtuelle. Installez les extensions nécessaires pour vérifier si elles fonctionnent correctement. Bien que le code VS soit possible sur Windows 8, il est recommandé de passer à un système Windows plus récent pour une meilleure expérience de développement et une meilleure sécurité.

L'extension VScode est-elle malveillante? L'extension VScode est-elle malveillante? Apr 15, 2025 pm 07:57 PM

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Apr 16, 2025 am 12:12 AM

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.

PHP et Python: une plongée profonde dans leur histoire PHP et Python: une plongée profonde dans leur histoire Apr 18, 2025 am 12:25 AM

PHP est originaire en 1994 et a été développé par Rasmuslerdorf. Il a été utilisé à l'origine pour suivre les visiteurs du site Web et a progressivement évolué en un langage de script côté serveur et a été largement utilisé dans le développement Web. Python a été développé par Guidovan Rossum à la fin des années 1980 et a été publié pour la première fois en 1991. Il met l'accent sur la lisibilité et la simplicité du code, et convient à l'informatique scientifique, à l'analyse des données et à d'autres domaines.

Comment exécuter des programmes dans Terminal Vscode Comment exécuter des programmes dans Terminal Vscode Apr 15, 2025 pm 06:42 PM

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

See all articles