Python implémente la méthode d'obtention des 100 premiers ensembles de nombres de Pythagore

不言
Libérer: 2018-05-04 14:39:53
original
4577 Les gens l'ont consulté

Cet article présente principalement la méthode d'obtention des 100 premiers ensembles de nombres de Pythagore en Python, impliquant le calcul numérique Python et les compétences opérationnelles liées au jugement. Les amis dans le besoin peuvent s'y référer

L'exemple de cet article. raconte l'implémentation de l'obtention des 100 premiers ensembles de nombres de Pythagore dans la méthode Python pour les 100 premiers ensembles de nombres de Pythagore. Je le partage avec vous pour votre référence. Les détails sont les suivants :

Je voulais au départ utiliser une heuristique exhaustive pour faire cet algorithme, mais plus tard j'ai trouvé que c'était encore un peu gênant. J'ai trouvé une méthode de solution sur Internet comme suit :

Quand a est un nombre impair 2n+1 supérieur à 1, b=2n^2+2n, c=2n^2+2n+1. En fait, il s’agit de diviser le nombre carré de a en deux nombres naturels consécutifs.

Écrivez le code comme suit :

#!/usr/bin/python
for n in range(1,101):
 a = 2 * n +1
 b = 2 * (n** 2) + 2 * n
 c = b + 1
 # check theresult
 if a ** 2 +b ** 2 == c ** 2:
  print("a= %d, b = %d, c = %d" %(a,b,c))
Copier après la connexion

Résultat de l'exécution du programme :

a = 3, b = 4, c = 5
a = 5, b = 12, c = 13
a = 7, b = 24, c = 25
a = 9, b = 40, c = 41
a = 11, b = 60, c = 61
a = 13, b = 84, c = 85
a = 15, b = 112, c = 113
a = 17, b = 144, c = 145
a = 19, b = 180, c = 181
a = 21, b = 220, c = 221
a = 23, b = 264, c = 265
a = 25, b = 312, c = 313
a = 27, b = 364, c = 365
a = 29, b = 420, c = 421
a = 31, b = 480, c = 481
a = 33, b = 544, c = 545
a = 35, b = 612, c = 613
a = 37, b = 684, c = 685
a = 39, b = 760, c = 761
a = 41, b = 840, c = 841
a = 43, b = 924, c = 925
a = 45, b = 1012, c = 1013
a = 47, b = 1104, c = 1105
a = 49, b = 1200, c = 1201
a = 51, b = 1300, c = 1301
a = 53, b = 1404, c = 1405
a = 55, b = 1512, c = 1513
a = 57, b = 1624, c = 1625
a = 59, b = 1740, c = 1741
a = 61, b = 1860, c = 1861
a = 63, b = 1984, c = 1985
a = 65, b = 2112, c = 2113
a = 67, b = 2244, c = 2245
a = 69, b = 2380, c = 2381
a = 71, b = 2520, c = 2521
a = 73, b = 2664, c = 2665
a = 75, b = 2812, c = 2813
a = 77, b = 2964, c = 2965
a = 79, b = 3120, c = 3121
a = 81, b = 3280, c = 3281
a = 83, b = 3444, c = 3445
a = 85, b = 3612, c = 3613
a = 87, b = 3784, c = 3785
a = 89, b = 3960, c = 3961
a = 91, b = 4140, c = 4141
a = 93, b = 4324, c = 4325
a = 95, b = 4512, c = 4513
a = 97, b = 4704, c = 4705
a = 99, b = 4900, c = 4901
a = 101, b = 5100, c = 5101
a = 103, b = 5304, c = 5305
a = 105, b = 5512, c = 5513
a = 107, b = 5724, c = 5725
a = 109, b = 5940, c = 5941
a = 111, b = 6160, c = 6161
a = 113, b = 6384, c = 6385
a = 115, b = 6612, c = 6613
a = 117, b = 6844, c = 6845
a = 119, b = 7080, c = 7081
a = 121, b = 7320, c = 7321
a = 123, b = 7564, c = 7565
a = 125, b = 7812, c = 7813
a = 127, b = 8064, c = 8065
a = 129, b = 8320, c = 8321
a = 131, b = 8580, c = 8581
a = 133, b = 8844, c = 8845
a = 135, b = 9112, c = 9113
a = 137, b = 9384, c = 9385
a = 139, b = 9660, c = 9661
a = 141, b = 9940, c = 9941
a = 143, b = 10224, c = 10225
a = 145, b = 10512, c = 10513
a = 147, b = 10804, c = 10805
a = 149, b = 11100, c = 11101
a = 151, b = 11400, c = 11401
a = 153, b = 11704, c = 11705
a = 155, b = 12012, c = 12013
a = 157, b = 12324, c = 12325
a = 159, b = 12640, c = 12641
a = 161, b = 12960, c = 12961
a = 163, b = 13284, c = 13285
a = 165, b = 13612, c = 13613
a = 167, b = 13944, c = 13945
a = 169, b = 14280, c = 14281
a = 171, b = 14620, c = 14621
a = 173, b = 14964, c = 14965
a = 175, b = 15312, c = 15313
a = 177, b = 15664, c = 15665
a = 179, b = 16020, c = 16021
a = 181, b = 16380, c = 16381
a = 183, b = 16744, c = 16745
a = 185, b = 17112, c = 17113
a = 187, b = 17484, c = 17485
a = 189, b = 17860, c = 17861
a = 191, b = 18240, c = 18241
a = 193, b = 18624, c = 18625
a = 195, b = 19012, c = 19013
a = 197, b = 19404, c = 19405
a = 199, b = 19800, c = 19801
a = 201, b = 20200, c = 20201

Puisque le programme intègre le jugement de savoir s'il est pythagoricien, cette liste devrait être exacte. Après avoir résolu ce petit problème, mon sentiment est que les algorithmes sont toujours cruciaux dans la manière de faire les choses !

Recommandations associées :

Exemple d'algorithme de résolution du plus grand diviseur commun implémenté en Python

Basé sur matplotlib Python pour implémenter le temps Somme de forme d'onde de domaine de signaux sinusoïdaux Exemple de spectrogramme

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal
À propos de nous Clause de non-responsabilité Sitemap
Site Web PHP chinois:Formation PHP en ligne sur le bien-être public,Aidez les apprenants PHP à grandir rapidement!