Cet article vous présente principalement les informations pertinentes sur la déduplication et l'optimisation des tableaux numériques à l'aide de js pour construire des arbres binaires. L'article les présente en détail à travers des exemples de codes. Il a une certaine valeur d'apprentissage de référence pour l'étude ou le travail de chacun. J’ai besoin d’amis, étudions ensemble.
Avant-propos
Cet article présente principalement le contenu pertinent sur la construction d'un arbre binaire avec js pour dédupliquer et optimiser des tableaux numériques. Il est partagé pour. votre référence. Learning, je n'en dirai pas plus ci-dessous, jetons un œil à l'introduction détaillée.
Boucle commune à deux couches pour implémenter la déduplication de tableau
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] let newArr = [] for (let i = 0; i < arr.length; i++) { let unique = true for (let j = 0; j < newArr.length; j++) { if (newArr[j] === arr[i]) { unique = false break } } if (unique) { newArr.push(arr[i]) } } console.log(newArr)
Construire un arbre binaire pour réaliser la déduplication (applicable uniquement aux tableaux de type numérique)
Construire les éléments précédemment parcourus dans un arbre binaire. l'arbre Les nœuds satisfont tous : la valeur du sous-nœud gauche < la valeur du nœud actuel < la valeur du sous-nœud droit
Cela optimise le processus de jugement si l'élément est apparu before
if Si l'élément est plus grand que le nœud actuel, il vous suffit de déterminer si l'élément apparaît dans le sous-arbre droit du nœud
Si l'élément est plus petit que le nœud actuel, il vous suffit de déterminer si l'élément apparaît dans le sous-arbre gauche du nœud
let arr = [0, 1, 2, 2, 5, 7, 11, 7, 6, 4,5, 2, 2] class Node { constructor(value) { this.value = value this.left = null this.right = null } } class BinaryTree { constructor() { this.root = null this.arr = [] } insert(value) { let node = new Node(value) if (!this.root) { this.root = node this.arr.push(value) return this.arr } let current = this.root while (true) { if (value > current.value) { if (current.right) { current = current.right } else { current.right = node this.arr.push(value) break } } if (value < current.value) { if (current.left) { current = current.left } else { current.left = node this.arr.push(value) break } } if (value === current.value) { break } } return this.arr } } let binaryTree = new BinaryTree() for (let i = 0; i < arr.length; i++) { binaryTree.insert(arr[i]) } console.log(binaryTree.arr)
Idée d'optimisation un, enregistrez le maximum et valeurs minimales
Enregistrez les valeurs maximales et minimales des éléments insérés S'il est plus grand que le plus grand élément ou plus petit que le plus petit élément, insérez directement.
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] class Node { constructor(value) { this.value = value this.left = null this.right = null } } class BinaryTree { constructor() { this.root = null this.arr = [] this.max = null this.min = null } insert(value) { let node = new Node(value) if (!this.root) { this.root = node this.arr.push(value) this.max = value this.min = value return this.arr } if (value > this.max) { this.arr.push(value) this.max = value this.findMax().right = node return this.arr } if (value < this.min) { this.arr.push(value) this.min = value this.findMin().left = node return this.arr } let current = this.root while (true) { if (value > current.value) { if (current.right) { current = current.right } else { current.right = node this.arr.push(value) break } } if (value < current.value) { if (current.left) { current = current.left } else { current.left = node this.arr.push(value) break } } if (value === current.value) { break } } return this.arr } findMax() { let current = this.root while (current.right) { current = current.right } return current } findMin() { let current = this.root while (current.left) { current = current.left } return current } } let binaryTree = new BinaryTree() for (let i = 0; i < arr.length; i++) { binaryTree.insert(arr[i]) } console.log(binaryTree.arr)
Idée d'optimisation deux, construire un arbre rouge-noir
Construisez un arbre rouge-noir et équilibrez la hauteur de l'arbre
La partie sur les arbres rouge-noir, veuillez voir l'insertion de l'arbre rouge-noir
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] console.log(Array.from(new Set(arr))) class Node { constructor(value) { this.value = value this.left = null this.right = null this.parent = null this.color = 'red' } } class RedBlackTree { constructor() { this.root = null this.arr = [] } insert(value) { let node = new Node(value) if (!this.root) { node.color = 'black' this.root = node this.arr.push(value) return this } let cur = this.root let inserted = false while (true) { if (value > cur.value) { if (cur.right) { cur = cur.right } else { cur.right = node this.arr.push(value) node.parent = cur inserted = true break } } if (value < cur.value) { if (cur.left) { cur = cur.left } else { cur.left = node this.arr.push(value) node.parent = cur inserted = true break } } if (value === cur.value) { break } } // 调整树的结构 if(inserted){ this.fixTree(node) } return this } fixTree(node) { if (!node.parent) { node.color = 'black' this.root = node return } if (node.parent.color === 'black') { return } let son = node let father = node.parent let grandFather = father.parent let directionFtoG = father === grandFather.left ? 'left' : 'right' let uncle = grandFather[directionFtoG === 'left' ? 'right' : 'left'] let directionStoF = son === father.left ? 'left' : 'right' if (!uncle || uncle.color === 'black') { if (directionFtoG === directionStoF) { if (grandFather.parent) { grandFather.parent[grandFather.parent.left === grandFather ? 'left' : 'right'] = father father.parent = grandFather.parent } else { this.root = father father.parent = null } father.color = 'black' grandFather.color = 'red' father[father.left === son ? 'right' : 'left'] && (father[father.left === son ? 'right' : 'left'].parent = grandFather) grandFather[grandFather.left === father ? 'left' : 'right'] = father[father.left === son ? 'right' : 'left'] father[father.left === son ? 'right' : 'left'] = grandFather grandFather.parent = father return } else { grandFather[directionFtoG] = son son.parent = grandFather son[directionFtoG] && (son[directionFtoG].parent = father) father[directionStoF] = son[directionFtoG] father.parent = son son[directionFtoG] = father this.fixTree(father) } } else { father.color = 'black' uncle.color = 'black' grandFather.color = 'red' this.fixTree(grandFather) } } } let redBlackTree = new RedBlackTree() for (let i = 0; i < arr.length; i++) { redBlackTree.insert(arr[i]) } console.log(redBlackTree.arr)
Autres méthodes de déduplication
Supprimer la duplication via l'objet Set
[...new Set(arr)]
Supprimez les duplications via la méthode sort()
+ reduce()
Après le tri, comparez les éléments adjacents pour voir s'ils sont les idem. S'ils sont différents, ajoutez-les au tableau renvoyé
Il est à noter que lors du tri, la valeur par défaut compare(2, '2')
renvoie 0 tandis que réduire (), effectue une comparaison congruente
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = [] arr.sort((a, b) => { let res = a - b if (res !== 0) { return res } else { if (a === b) { return 0 } else { if (typeof a === 'number') { return -1 } else { return 1 } } } }).reduce((pre, cur) => { if (pre !== cur) { newArr.push(cur) return cur } return pre }, null)
supprimer les doublons via la méthode includes()
+ map()
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = [] arr.map(a => !newArr.includes(a) && newArr.push(a))
Déduplication via includes()
+ reduce()
méthode
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = arr.reduce((pre, cur) => { !pre.includes(cur) && pre.push(cur) return pre }, [])
via une paire clé-valeur d'objet + déduplication de méthode d'objet JSON
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let obj = {} arr.map(a => { if(!obj[JSON.stringify(a)]){ obj[JSON.stringify(a)] = 1 } }) console.log(Object.keys(obj).map(a => JSON.parse(a)))
Ce qui précède est ce que j'ai compilé pour vous. J'espère que cela vous sera utile à l'avenir.
Articles connexes :
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!