Maison > interface Web > js tutoriel > JavaScript implémente la blockchain

JavaScript implémente la blockchain

亚连
Libérer: 2018-05-30 14:26:17
original
2379 Les gens l'ont consulté

De nombreux amis ont entendu parler des crypto-monnaies telles que Bitcoin et Ethereum, mais seules quelques personnes comprennent la technologie qui se cache derrière elles. Ensuite, à travers cet article, je vais vous présenter l'utilisation de JavaScript pour créer une blockchain simple. en interne. Les amis intéressés peuvent y jeter un œil

Presque tout le monde a entendu parler des crypto-monnaies comme Bitcoin et Ethereum, mais seules quelques personnes savent comment les cacher. Dans cet article, j'utiliserai JavaScript pour créer une blockchain simple afin de démontrer leur fonctionnement en interne. Je l'appellerai SavjeeCoin !

Le texte intégral est divisé en trois parties :

  1. partie 1 : Implémentation d'une blockchain de base

  2. partie 2 : Implémentation de POW

  3. partie 3 : Transactions et récompenses minières

Partie 1 : Implémentation d'une blockchain de base

Blockchain

Blockchain est une base de données publique composée de blocs accessibles à tous. Cela peut ne rien paraître de spécial, mais ils ont une propriété intéressante : ils sont immuables. Une fois qu’un bloc est ajouté à la blockchain, il ne peut plus être modifié sans invalider les blocs restants.

C’est pourquoi les cryptomonnaies sont basées sur la blockchain. Vous ne voulez pas que les gens changent d’offre une fois qu’ils ont terminé !

Créer un bloc

La blockchain est composée de nombreux blocs liés entre eux (cela ne ressemble à rien de mal...). Les blocs de la chaîne nous permettent de détecter si quelqu'un a manipulé l'un des blocs précédents.

Alors, comment pouvons-nous garantir l’intégrité des données ? Chaque bloc contient un hachage calculé en fonction de son contenu. Il contient également le hachage du bloc précédent.

Voici à quoi ressemble une classe de bloc écrite en JavaScript :

const SHA256 = require("crypto-js/sha256");
class Block {
 constructor(index, timestamp, data, previousHash = '') {
 this.index = index;
 this.previousHash = previousHash;
 this.timestamp = timestamp;
 this.data = data;
 this.hash = this.calculateHash();
 }
 calculateHash() {
 return SHA256(this.index + this.previousHash + this.timestamp + JSON.stringify(this.data)).toString();
 }
}
Copier après la connexion

Parce que JavaScript ne prend pas en charge sha256, j'ai introduit la cryptographie -js bibliothèque. Ensuite j'ai défini un constructeur pour initialiser les propriétés de mon bloc. Chaque bloc reçoit un attribut d'index pour nous indiquer la position de ce bloc dans toute la chaîne. Nous avons également généré un horodatage et certaines données qui doivent être stockées dans le bloc. Enfin, on retrouve le hachage du bloc précédent.

Créer une chaîne

Nous pouvons maintenant relier les blocs entre eux dans la classe Blockchain ! Voici le code implémenté en JavaScript :

class Blockchain{
 constructor() {
 this.chain = [this.createGenesisBlock()];
 }
 createGenesisBlock() {
 return new Block(0, "01/01/2017", "Genesis block", "0");
 }
 getLatestBlock() {
 return this.chain[this.chain.length - 1];
 }
 addBlock(newBlock) {
 newBlock.previousHash = this.getLatestBlock().hash;
 newBlock.hash = newBlock.calculateHash();
 this.chain.push(newBlock);
 }
 isChainValid() {
 for (let i = 1; i < this.chain.length; i++){
  const currentBlock = this.chain[i];
  const previousBlock = this.chain[i - 1];
  if (currentBlock.hash !== currentBlock.calculateHash()) {
  return false;
  }
  if (currentBlock.previousHash !== previousBlock.hash) {
  return false;
  }
 }
 return true;
 }
}
Copier après la connexion

Dans le constructeur, j'initialise toute la chaîne en créant un tableau contenant le bloc Genesis. Le premier bloc est spécial car il ne peut pas pointer vers le bloc précédent. J'ai également ajouté les deux méthodes suivantes :

  • getLatestBlock() renvoie le dernier bloc de notre blockchain.

  • addBlock() est responsable de l'ajout de nouveaux blocs à notre chaîne. Pour ce faire, nous ajoutons le hachage du bloc précédent à notre nouveau bloc. De cette façon, nous pouvons maintenir l’intégrité de toute la chaîne. Car tant que l’on modifie le contenu du dernier bloc, il faut recalculer son hachage. Une fois le calcul terminé, je pousserai le bloc dans la chaîne (un tableau).

Enfin, je crée un isChainValid() pour m'assurer que personne n'a altéré la blockchain. Il parcourra tous les blocs pour vérifier si le hachage de chaque bloc est correct. Il vérifie si chaque bloc pointe vers le bon bloc précédent en comparant previousHash . Il retournera true si tout va bien, sinon il retournera false .

Utiliser la Blockchain

Notre classe blockchain a été écrite et nous pouvons réellement commencer à l'utiliser !

let savjeeCoin = new Blockchain();
savjeeCoin.addBlock(new Block(1, "20/07/2017", { amount: 4 }));
savjeeCoin.addBlock(new Block(2, "20/07/2017", { amount: 8 }));
Copier après la connexion

Ici, je viens de créer une instance de la blockchain et je l'ai nommée SavjeeCoin ! Après cela, j'ai ajouté quelques blocs à la chaîne. Le bloc peut contenir toutes les données que vous souhaitez, mais dans le code ci-dessus, j'ai choisi d'ajouter un objet avec une propriété montant.

Essayez-le !

Dans l'introduction, j'ai dit que la blockchain est immuable. Une fois ajouté, le bloc ne peut plus être modifié. Essayons !

// 检查是否有效(将会返回true)
console.log(&#39;Blockchain valid? &#39; + savjeeCoin.isChainValid());
// 现在尝试操作变更数据
savjeeCoin.chain[1].data = { amount: 100 };
// 再次检查是否有效 (将会返回false)
console.log("Blockchain valid? " + savjeeCoin.isChainValid());
Copier après la connexion

Je vérifierais l'intégrité de toute la chaîne au début en exécutant isChainValid(). Nous avons opéré sur n'importe quel bloc, donc cela retournera vrai.

Après cela, j'ai modifié les données du premier bloc (index 1) de la chaîne. Ensuite, j'ai vérifié à nouveau l'intégrité de la chaîne entière et j'ai constaté qu'elle renvoyait faux. Toute notre chaîne ne fonctionne plus.

Conclusion

Ce petit marronnier est loin d'être complet. Il n'a pas implémenté de POW (mécanisme de preuve de travail) ou de réseau P2P pour communiquer avec d'autres mineurs.

Mais il a prouvé comment fonctionne la blockchain. Beaucoup de gens pensent que les principes seront très compliqués, mais cet article prouve que les concepts de base de la blockchain sont très faciles à comprendre et à mettre en œuvre.

Partie 2 : Mise en œuvre du POW (preuve de travail : preuve de travail)

在part1中我们用JavaScript创建了一个简单的区块链来演示区块链的工作原理。不过这个实现并不完整,很多人发现依旧可以篡改该系统。没错!我们的区块链需要另一种机制来抵御攻击。那么让我们来看看我们该如何做到这一点!

问题

现在我们可以很快的创造区块然后非常迅速的将它们添加进我们的区块链中。不过这导致了三个问题:

  • 第一:人们可以快速创建区块然后在我们的链里塞满垃圾。大量的区块会导致我们区块链过载并让其无法使用。

  • 第二:因为创建一个有效的区块太容易了,人们可以篡改链中的某一个区块,然后重新计算所有区块的hash。即使它们已经篡改了区块,他们仍然可以以有效的区块来作为结束。

  • 第三:你可以通过结合上述两个破绽来有效控制区块链。区块链由p2p网络驱动,其中节点会将区块添加到可用的最长链中。所以你可以篡改区块,然后计算所有其他的区块,最后添加多任意你想要添加的区块。你最后会得到一个最长的链,所有的其它节点都会接受它然后往上添加自己的区块。

显然我们需要一个方案来解决这些问题:POW。

什么是POW

POW是在第一个区块链被创造之前就已经存在的一种机制。这是一项简单的技术,通过一定数量的计算来防止滥用。工作量是防止垃圾填充和篡改的关键。如果它需要大量的算力,那么填充垃圾就不再值得。

比特币通过要求hash以特定0的数目来实现POW。这也被称之为 难度

不过等一下!一个区块的hash怎么可以改变呢?在比特币的场景下,一个区块包含有各种金融交易信息。我们肯定不希望为了获取正确的hash而混淆了那些数据。

为了解决这个问题,区块链添加了一个 nonce 值。Nonce是用来查找一个有效Hash的次数。而且,因为无法预测hash函数的输出,因此在获得满足难度条件的hash之前,只能大量组合尝试。寻找到一个有效的hash(创建一个新的区块)在圈内称之为挖矿。

在比特币的场景下,POW确保每10分钟只能添加一个区块。你可以想象垃圾填充者需要多大的算力来创造一个新区块,他们很难欺骗网络,更不要说篡改整个链。

实现POW

我们该如何实现呢?我们先来修改我们区块类并在其构造函数中添加Nonce变量。我会初始化它并将其值设置为0。

constructor(index, timestamp, data, previousHash = &#39;&#39;) {
 this.index = index;
 this.previousHash = previousHash;
 this.timestamp = timestamp;
 this.data = data;
 this.hash = this.calculateHash();
 this.nonce = 0;
}
Copier après la connexion


我们还需要一个新的方法来增加Nonce,直到我们获得一个有效hash。强调一下,这是由难度决定的。所以我们会收到作为参数的难度。

mineBlock(difficulty) {
 while (this.hash.substring(0, difficulty) !== Array(difficulty + 1).join("0")) {
  this.nonce++;
  this.hash = this.calculateHash();
 }
 console.log("BLOCK MINED: " + this.hash);
}
Copier après la connexion


最后,我们还需要更改一下 calculateHash() 函数。因为目前他还没有使用Nonce来计算hash。

calculateHash() {
 return SHA256(this.index +
 this.previousHash +
 this.timestamp +
 JSON.stringify(this.data) +
 this.nonce
 ).toString();
}
Copier après la connexion

将它们结合在一起,你会得到如下所示的区块类:

class Block {
 constructor(index, timestamp, data, previousHash = &#39;&#39;) {
 this.index = index;
 this.previousHash = previousHash;
 this.timestamp = timestamp;
 this.data = data;
 this.hash = this.calculateHash();
 this.nonce = 0;
 }
 calculateHash() {
 return SHA256(this.index + this.previousHash + this.timestamp + JSON.stringify(this.data) + this.nonce).toString();
 }
 mineBlock(difficulty) {
 while (this.hash.substring(0, difficulty) !== Array(difficulty + 1).join("0")) {
  this.nonce++;
  this.hash = this.calculateHash();
 }
 console.log("BLOCK MINED: " + this.hash);
 }
}
Copier après la connexion

修改区块链

现在,我们的区块已经拥有Nonce并且可以被开采了,我们还需要确保我们的区块链支持这种新的行为。让我们先在区块链中添加一个新的属性来跟踪整条链的难度。我会将它设置为2(这意味着区块的hash必须以2个0开头)。

constructor() {
 this.chain = [this.createGenesisBlock()];
 this.difficulty = 2;
}
Copier après la connexion


现在剩下要做的就是改变 addBlock() 方法,以便在将其添加到链中之前确保实际挖到该区块。下面我们将难度传给区块。

addBlock(newBlock) {
 newBlock.previousHash = this.getLatestBlock().hash;
 newBlock.mineBlock(this.difficulty);
 this.chain.push(newBlock);
}
Copier après la connexion


大功告成!我们的区块链现在拥有了POW来抵御攻击了。

测试

现在让我们来测试一下我们的区块链,看看在POW下添加一个新区块会有什么效果。我将会使用之前的代码。我们将创建一个新的区块链实例然后往里添加2个区块。

let savjeeCoin = new Blockchain();
console.log(&#39;Mining block 1&#39;);
savjeeCoin.addBlock(new Block(1, "20/07/2017", { amount: 4 }));
console.log(&#39;Mining block 2&#39;);
savjeeCoin.addBlock(new Block(2, "20/07/2017", { amount: 8 }));
Copier après la connexion

如果你运行了上面的代码,你会发现添加新区块依旧非常快。这是因为目前的难度只有2(或者你的电脑性能非常好)。

如果你创建了一个难度为5的区块链实例,你会发现你的电脑会花费大概十秒钟来挖矿。随着难度的提升,你的防御攻击的保护程度越高。

免责声明

就像之前说的:这绝不是一个完整的区块链。它仍然缺少很多功能(像P2P网路)。这只是为了说明区块链的工作原理。

并且:由于单线程的原因,用JavaScript来挖矿并不快。

Part3:交易与挖矿奖励

在前面两部分我们创建了一个简单的区块链,并且加入了POW来抵御攻击。然而我们在途中也偷了懒:我们的区块链只能在一个区块中存储一笔交易,而且矿工没有奖励。现在,让我们解决这个问题!

重构区块类

现在一个区块拥有 index , previousHash , timestamp , data , hash 和 nonce 属性。这个 index 属性并不是很有用,事实上我甚至不知道为什么开始我要将它添加进去。所以我把它移除了,同时将 data 改名为 transactions 来更语义化。

class Block{
 constructor(timestamp, transactions, previousHash = &#39;&#39;) {
 this.previousHash = previousHash;
 this.timestamp = timestamp;
 this.transactions = transactions;
 this.hash = this.calculateHash();
 this.nonce = 0;
 }
}
Copier après la connexion


当我们改变区块类时,我们也必须更改 calculateHash() 函数。现在它还在使用老旧的 index 和 data 属性。

calculateHash() {
 return SHA256(this.previousHash + this.timestamp + JSON.stringify(this.transactions) + this.nonce).toString();
}
Copier après la connexion

交易类

在区块内,我们将可以存储多笔交易。因此我们还需要定义一个交易类,一边我们可以锁定交易应当具有的属性:

class Transaction{
 constructor(fromAddress, toAddress, amount){
 this.fromAddress = fromAddress;
 this.toAddress = toAddress;
 this.amount = amount;
 }
}
Copier après la connexion

这个交易例子非常的简单,仅仅包含了发起方( fromAddress )和接受方( toAddress )以及数量。如果有需求,你也可以在里面加入更多字段,不过这个只是为了最小实现。

调整我们的区块链

当前的最大任务:调整我们的区块链来适应这些新变化。我们需要做的第一件事就是存储待处理交易的地方。

正如你所知道的,由于POW,区块链可以稳定的创建区块。在比特币的场景下,难度被设置成大约每10分钟创建一个新区块。但是,是可以在创造两个区块之间提交新的交易。

为了做到这一点,首先需要改变我们区块链的构造函数,以便他可以存储待处理的交易。我们还将创造一个新的属性,用于定义矿工获得多少钱作为奖励:

class Blockchain{
 constructor() {
  this.chain = [this.createGenesisBlock()];
  this.difficulty = 5;
  // 在区块产生之间存储交易的地方
  this.pendingTransactions = [];
  // 挖矿回报
  this.miningReward = 100;
 }
}
Copier après la connexion


下一步,我们将调整我们的 addBlock() 方法。不过我的调整是指删掉并重写它!我们将不再允许人们直接为链上添加区块。相反,他们必须将交易添加至下一个区块中。而且我们将 addBlock() 更名为 createTransaction() ,这看起来更语义化:

createTransaction(transaction) {
 // 这里应该有一些校验!
 // 推入待处理交易数组
 this.pendingTransactions.push(transaction);
}
Copier après la connexion


挖矿

人们现在可以将新的交易添加到待处理交易的列表中。但无论如何,我们需要将他们清理掉并移入实际的区块中。为此,我们来创建一个 minePendingTransactions() 方法。这个方法不仅会挖掘所有待交易的新区块,而且还会向采矿者发送奖励。

minePendingTransactions(miningRewardAddress) {
 // 用所有待交易来创建新的区块并且开挖..
 let block = new Block(Date.now(), this.pendingTransactions);
 block.mineBlock(this.difficulty);
 // 将新挖的看矿加入到链上
 this.chain.push(block);
 // 重置待处理交易列表并且发送奖励
 this.pendingTransactions = [
   new Transaction(null, miningRewardAddress, this.miningReward)
 ];
}
Copier après la connexion


请注意,该方法采用了参数 miningRewardAddress 。如果你开始挖矿,你可以将你的钱包地址传递给此方法。一旦成功挖到矿,系统将创建一个新的交易来给你挖矿奖励(在这个栗子里是100枚币)。

有一点需要注意的是,在这个栗子中,我们将所有待处理交易一并添加到一个区块中。但实际上,由于区块的大小是有限制的,所以这是行不通的。在比特币里,一个区块的大小大概是2Mb。如果有更多的交易能够挤进一个区块,那么矿工可以选择哪些交易达成哪些交易不达成(通常情况下费用更高的交易容易获胜)。

地址的余额

在测试我们的代码钱让我们再做一件事!如果能够检查我们区块链上地址的余额将会更好。

getBalanceOfAddress(address){
 let balance = 0; // you start at zero!
 // 遍历每个区块以及每个区块内的交易
 for(const block of this.chain){
  for(const trans of block.transactions){
   // 如果地址是发起方 -> 减少余额
   if(trans.fromAddress === address){
    balance -= trans.amount;
   }
   // 如果地址是接收方 -> 增加余额
   if(trans.toAddress === address){
    balance += trans.amount;
   }
  }
 }
 return balance;
}
Copier après la connexion

测试

好吧,我们已经完成并可以最终一切是否可以正常工作!为此,我们创建了一些交易:

let savjeeCoin = new Blockchain();
console.log(&#39;Creating some transactions...&#39;);
savjeeCoin.createTransaction(new Transaction(&#39;address1&#39;, &#39;address2&#39;, 100));
savjeeCoin.createTransaction(new Transaction(&#39;address2&#39;, &#39;address1&#39;, 50));
Copier après la connexion

这些交易目前都处于等待状态,为了让他们得到证实,我们必须开始挖矿:

console.log(&#39;Starting the miner...&#39;);
savjeeCoin.minePendingTransactions(&#39;xaviers-address&#39;);
Copier après la connexion

当我们开始挖矿,我们也会传递一个我们想要获得挖矿奖励的地址。在这种情况下,我的地址是 xaviers-address (非常复杂!)。

之后,让我们检查一下 xaviers-address 的账户余额:

console.log(&#39;Balance of Xaviers address is&#39;, savjeeCoin.getBalanceOfAddress(&#39;xaviers-address&#39;));
// 输出: 0
Copier après la connexion


我的账户输出竟然是0?!等等,为什么?难道我不应该得到我的挖矿奖励么?那么,如果你仔细观察代码,你会看到系统会创建一个交易,然后将您的挖矿奖励添加为新的待处理交易。这笔交易将会包含在下一个区块中。所以如果我们再次开始挖矿,我们将收到我们的100枚硬币奖励!

console.log(&#39;Starting the miner again!&#39;);
savjeeCoin.minePendingTransactions("xaviers-address");
console.log(&#39;Balance of Xaviers address is&#39;, savjeeCoin.getBalanceOfAddress(&#39;xaviers-address&#39;));
// 输出: 100
Copier après la connexion

局限性与结论

现在我们的区块链已经可以在一个区块上存储多笔交易,并且可以为矿工带来回报。

Il y a cependant quelques inconvénients : lors de l'envoi de devises, nous ne vérifions pas si l'expéditeur dispose d'un solde suffisant pour effectuer réellement la transaction. Cependant, c’est en fait une chose facile à résoudre. Nous n'avons pas non plus créé de nouveau portefeuille ni signé la transaction (traditionnellement effectuée avec un cryptage à clé publique/privée).

Ce qui précède est ce que j'ai compilé pour vous. J'espère que cela vous sera utile à l'avenir.

Articles associés :

Projets créés par vue-cli, comment configurer l'implémentation multi-pages

web3.js ajout des étapes de la méthode eth.getRawTransactionByHash(txhash)

exemple de méthode simple nodejs pour accéder et utiliser la base de données MySQL

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Derniers numéros
c++ appelle javascript
Depuis 1970-01-01 08:00:00
0
0
0
Qu’est-ce que le garbage collection JavaScript ?
Depuis 1970-01-01 08:00:00
0
0
0
Que sont les fonctions de hook JavaScript ?
Depuis 1970-01-01 08:00:00
0
0
0
Comment obtenir la date actuelle en JavaScript ?
Depuis 1970-01-01 08:00:00
0
0
0
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal