


pytorch + visdom gère des problèmes de classification simples
Cet article présente principalement comment pytorch + visdom gère des problèmes de classification simples. Il a une certaine valeur de référence. Maintenant, je le partage avec vous. Les amis dans le besoin peuvent s'y référer
Environnement<.>
Système : win 10Carte graphique : gtx965m
CPU : i7-6700HQ
python 3.61
pytorch 0.3
Référence du package
import torch from torch.autograd import Variable import torch.nn.functional as F import numpy as np import visdom import time from torch import nn,optim
Préparation des données
use_gpu = True ones = np.ones((500,2)) x1 = torch.normal(6*torch.from_numpy(ones),2) y1 = torch.zeros(500) x2 = torch.normal(6*torch.from_numpy(ones*[-1,1]),2) y2 = y1 +1 x3 = torch.normal(-6*torch.from_numpy(ones),2) y3 = y1 +2 x4 = torch.normal(6*torch.from_numpy(ones*[1,-1]),2) y4 = y1 +3 x = torch.cat((x1, x2, x3 ,x4), 0).float() y = torch.cat((y1, y2, y3, y4), ).long()
préparation à la visualisation Visdom
Créez d'abord les fenêtres qui doivent être observéesviz = visdom.Visdom() colors = np.random.randint(0,255,(4,3)) #颜色随机 #线图用来观察loss 和 accuracy line = viz.line(X=np.arange(1,10,1), Y=np.arange(1,10,1)) #散点图用来观察分类变化 scatter = viz.scatter( X=x, Y=y+1, opts=dict( markercolor = colors, marksize = 5, legend=["0","1","2","3"]),) #text 窗口用来显示loss 、accuracy 、时间 text = viz.text("FOR TEST") #散点图做对比 viz.scatter( X=x, Y=y+1, opts=dict( markercolor = colors, marksize = 5, legend=["0","1","2","3"] ), )
Traitement de régression logistique
Entrée 2, sortie 4logstic = nn.Sequential( nn.Linear(2,4) )
if use_gpu: gpu_status = torch.cuda.is_available() if gpu_status: logstic = logstic.cuda() # net = net.cuda() print("###############使用gpu##############") else : print("###############使用cpu##############") else: gpu_status = False print("###############使用cpu##############")
loss_f = nn.CrossEntropyLoss() optimizer_l = optim.SGD(logstic.parameters(), lr=0.001)
start_time = time.time() time_point, loss_point, accuracy_point = [], [], [] for t in range(2000): if gpu_status: train_x = Variable(x).cuda() train_y = Variable(y).cuda() else: train_x = Variable(x) train_y = Variable(y) # out = net(train_x) out_l = logstic(train_x) loss = loss_f(out_l,train_y) optimizer_l.zero_grad() loss.backward() optimizer_l.step()
if t % 10 == 0: prediction = torch.max(F.softmax(out_l, 1), 1)[1] pred_y = prediction.data accuracy = sum(pred_y ==train_y.data)/float(2000.0) loss_point.append(loss.data[0]) accuracy_point.append(accuracy) time_point.append(time.time()-start_time) print("[{}/{}] | accuracy : {:.3f} | loss : {:.3f} | time : {:.2f} ".format(t + 1, 2000, accuracy, loss.data[0], time.time() - start_time)) viz.line(X=np.column_stack((np.array(time_point),np.array(time_point))), Y=np.column_stack((np.array(loss_point),np.array(accuracy_point))), win=line, opts=dict(legend=["loss", "accuracy"])) #这里的数据如果用gpu跑会出错,要把数据换成cpu的数据 .cpu()即可 viz.scatter(X=train_x.cpu().data, Y=pred_y.cpu()+1, win=scatter,name="add", opts=dict(markercolor=colors,legend=["0", "1", "2", "3"])) viz.text("<h3 align='center' style='color:blue'>accuracy : {}</h3><br><h3 align='center' style='color:pink'>" "loss : {:.4f}</h3><br><h3 align ='center' style='color:green'>time : {:.1f}</h3>" .format(accuracy,loss.data[0],time.time()-start_time),win =text)
Ajoutez une couche neuronale :
net = nn.Sequential( nn.Linear(2, 10), nn.ReLU(), #激活函数 nn.Linear(10, 4) )
Un exemple de construction d'un réseau neuronal simple pour implémenter la régression et la classification sur PyTorch
Explication détaillée de la formation PyTorch Batch et de la comparaison des optimiseurs
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Ce site a rapporté le 22 octobre qu'au troisième trimestre de cette année, iFlytek a réalisé un bénéfice net de 25,79 millions de yuans, soit une baisse de 81,86 % sur un an ; diminution d'une année sur l'autre de 76,36%. Jiang Tao, vice-président d'iFlytek, a révélé lors de la séance d'information sur les performances du troisième trimestre qu'iFlytek avait lancé un projet de recherche spécial avec Huawei Shengteng début 2023 et développé conjointement une bibliothèque d'opérateurs hautes performances avec Huawei pour créer conjointement une nouvelle base pour l'artificiel général de la Chine. intelligence pour permettre des modèles nationaux à grande échelle L'architecture est basée sur des logiciels et du matériel innovants indépendamment. Il a souligné que les capacités actuelles de l’Ascend 910B de Huawei sont fondamentalement comparables à celles de l’A100 de Nvidia. Lors du prochain iFlytek 1024 Global Developer Festival, iFlytek et Huawei feront d'autres annonces conjointes sur la base de puissance de calcul de l'intelligence artificielle. Il a également mentionné,

PyCharm est un puissant environnement de développement intégré (IDE) et PyTorch est un framework open source populaire dans le domaine de l'apprentissage profond. Dans le domaine de l'apprentissage automatique et de l'apprentissage profond, l'utilisation de PyCharm et PyTorch pour le développement peut améliorer considérablement l'efficacité du développement et la qualité du code. Cet article présentera en détail comment installer et configurer PyTorch dans PyCharm, et joindra des exemples de code spécifiques pour aider les lecteurs à mieux utiliser les puissantes fonctions de ces deux éléments. Étape 1 : Installer PyCharm et Python

Dans les tâches de génération de langage naturel, la méthode d'échantillonnage est une technique permettant d'obtenir du texte à partir d'un modèle génératif. Cet article abordera 5 méthodes courantes et les implémentera à l'aide de PyTorch. 1. GreedyDecoding Dans le décodage gourmand, le modèle génératif prédit les mots de la séquence de sortie en fonction du temps de la séquence d'entrée pas à pas. À chaque pas de temps, le modèle calcule la distribution de probabilité conditionnelle de chaque mot, puis sélectionne le mot avec la probabilité conditionnelle la plus élevée comme sortie du pas de temps actuel. Ce mot devient l'entrée du pas de temps suivant et le processus de génération se poursuit jusqu'à ce qu'une condition de fin soit remplie, telle qu'une séquence d'une longueur spécifiée ou un marqueur de fin spécial. La caractéristique de GreedyDecoding est qu’à chaque fois la probabilité conditionnelle actuelle est la meilleure

Avant de comprendre en détail le principe de fonctionnement du modèle probabiliste de diffusion de débruitage (DDPM), comprenons d'abord une partie du développement de l'intelligence artificielle générative, qui est également l'une des recherches fondamentales du DDPM. VAEVAE utilise un encodeur, un espace latent probabiliste et un décodeur. Pendant l'entraînement, l'encodeur prédit la moyenne et la variance de chaque image et échantillonne ces valeurs à partir d'une distribution gaussienne. Le résultat de l'échantillonnage est transmis au décodeur, qui convertit l'image d'entrée sous une forme similaire à l'image de sortie. La divergence KL est utilisée pour calculer la perte. Un avantage significatif de la VAE est sa capacité à générer des images diversifiées. Lors de l'étape d'échantillonnage, on peut directement échantillonner à partir de la distribution gaussienne et générer de nouvelles images via le décodeur. Le GAN a fait de grands progrès dans le domaine des auto-encodeurs variationnels (VAE) en seulement un an.

En tant que puissant framework d'apprentissage profond, PyTorch est largement utilisé dans divers projets d'apprentissage automatique. En tant que puissant environnement de développement intégré Python, PyCharm peut également fournir un bon support lors de la mise en œuvre de tâches d'apprentissage en profondeur. Cet article présentera en détail comment installer PyTorch dans PyCharm et fournira des exemples de code spécifiques pour aider les lecteurs à démarrer rapidement avec PyTorch pour des tâches d'apprentissage en profondeur. Étape 1 : Installer PyCharm Tout d’abord, nous devons nous assurer que nous avons

L’apprentissage profond est une branche importante dans le domaine de l’intelligence artificielle et a reçu de plus en plus d’attention ces dernières années. Afin de pouvoir mener des recherches et des applications en matière d'apprentissage profond, il est souvent nécessaire d'utiliser certains cadres d'apprentissage profond pour y parvenir. Dans cet article, nous présenterons comment utiliser PHP et PyTorch pour le deep learning. 1. Qu'est-ce que PyTorch ? PyTorch est un framework d'apprentissage automatique open source développé par Facebook. Il peut nous aider à créer et former rapidement des modèles d'apprentissage en profondeur. PyTorc

Bonjour à tous, je m'appelle Kite. Il y a deux ans, le besoin de convertir des fichiers audio et vidéo en contenu texte était difficile à réaliser, mais il peut désormais être facilement résolu en quelques minutes seulement. On dit que pour obtenir des données de formation, certaines entreprises ont entièrement exploré des vidéos sur des plateformes vidéo courtes telles que Douyin et Kuaishou, puis ont extrait l'audio des vidéos et les ont converties sous forme de texte pour les utiliser comme corpus de formation pour les modèles Big Data. . Si vous devez convertir un fichier vidéo ou audio en texte, vous pouvez essayer cette solution open source disponible aujourd'hui. Par exemple, vous pouvez rechercher des moments précis où apparaissent des dialogues dans des programmes de cinéma et de télévision. Sans plus attendre, entrons dans le vif du sujet. Whisper est le Whisper open source d'OpenAI. Bien sûr, il est écrit en Python et ne nécessite que quelques packages d'installation simples.

Étapes d'installation : 1. Ouvrez PyCharm et créez un nouveau projet Python ; 2. Dans la barre d'état inférieure de PyCharm, cliquez sur l'icône "Terminal" pour ouvrir la fenêtre du terminal. 3. Dans la fenêtre du terminal, utilisez la commande pip pour installer PyTorch ; , en fonction du système et des exigences, vous pouvez choisir différentes méthodes d'installation : 4. Une fois l'installation terminée, vous pouvez écrire du code dans PyCharm et importer la bibliothèque PyTorch pour l'utiliser.
