Comment les variables locales des fonctions Python sont-elles exécutées ? Une brève analyse de l'application des variables de fonction Python

不言
Libérer: 2018-09-03 17:33:53
original
2790 Les gens l'ont consulté

Ce que cet article vous apporte, c'est comment exécuter des variables locales de fonctions Python ? Une brève analyse de l'application des variables de fonction Python a une certaine valeur de référence. Les amis dans le besoin peuvent s'y référer, j'espère qu'elle vous sera utile.

Avant-propos

Quand j'étais dans CodeReview ces deux jours, j'ai vu du code comme celui-ci

# 伪代码
import somelib
class A(object):
    def load_project(self):
        self.project_code_to_name = {}
        for project in somelib.get_all_projects():
            self.project_code_to_name[project] = project
        ...
Copier après la connexion

L'intention est très simple, c'est-à-dire , pour obtenir somelib.get_all_projects Le projet était fourré dans self.project_code_to_name

Cependant, j'avais l'impression qu'il y avait une marge d'optimisation, j'ai donc proposé un plan d'ajustement :

import somelib
class A(object):
    def load_project(self):
        project_code_to_name = {}
        for project in somelib.get_all_projects():
            project_code_to_name[project] = project
        self.project_code_to_name = project_code_to_name
        ...
Copier après la connexion

. Le plan est très simple, il suffit de définir d'abord les variables locales project_code_to_name, après l'opération, d'attribuer la valeur à self.project_code_to_name.

Lors de tests ultérieurs, j'ai découvert que ce serait mieux. Maintenant que je connais les résultats, je veux absolument en explorer les raisons ensuite !

Variables locales

En fait, il existe un point de vue mentionné à de nombreux endroits sur Internet et même dans de nombreux livres : Accéder aux variables locales est beaucoup plus rapide , cela semble logique à première vue, puis j'ai vu beaucoup de données de test publiées ci-dessous, même si je ne sais pas ce que c'est, c'est vraiment cool, souvenez-vous-en, ne vous inquiétez pas !

Mais en fait, cette vision présente encore certaines limites et n’est pas universellement applicable. Alors commençons par comprendre cette phrase et pourquoi tout le monde aime la dire.

Regardez d'abord le code pour comprendre ce que sont les variables locales :

#coding: utf8
a = 1
def test(b):
    c = 'test'    
    print a   # 全局变量
    print b   # 局部变量
    print c   # 局部变量

test(3)
Copier après la connexion
# 输出
1
3
test
Copier après la connexion
简单来说,局部变量就是只作用于所在的函数域,超过作用域就被回收
Copier après la connexion

Pour comprendre ce que sont les variables locales, vous devez parler de l'amour des fonctions Python et variables locales Détestez l'amour et la haine, car si vous ne comprenez pas cela, il est difficile de sentir où est la vitesse

Pour éviter de s'ennuyer, expliquons-le avec le code ci-dessus, et au fait, attachez la fonction test Analyse du dis exécuté :

# CALL_FUNCTION

  5           0 LOAD_CONST               1 ('test')
              3 STORE_FAST               1 (c)

  6           6 LOAD_GLOBAL              0 (a)
              9 PRINT_ITEM
             10 PRINT_NEWLINE

  7          11 LOAD_FAST                0 (b)
             14 PRINT_ITEM
             15 PRINT_NEWLINE

  8          16 LOAD_FAST                1 (c)
             19 PRINT_ITEM
             20 PRINT_NEWLINE
             21 LOAD_CONST               0 (None)
             24 RETURN_VALUE
Copier après la connexion

Dans l'image ci-dessus, vous pouvez voir clairement les blocs d'instructions correspondant à a, b et c. La première ligne de chaque bloc est LOAD_XXX, comme son nom l'indique, indique d'où ces variables sont obtenues.

LOAD_GLOBAL Sans doute une vue d'ensemble, mais LOAD_FAST qu'est-ce que c'est ? Il semble qu’il devrait s’appeler LOAD_LOCAL, non ?

Cependant, le fait est tellement magique qu'il s'appelle en réalité LOAD_FAST, car les variables locales sont lues à partir d'un tableau appelé fastlocals, donc le nom s'appelle ainsi (je suppose).

Maintenant que le protagoniste est là, nous devons nous concentrer sur la compréhension de cela, car c'est en effet assez intéressant.

Exécution de fonctions Python

La construction et le fonctionnement des fonctions Python ne sont ni complexes, ni simples, car elles doivent distinguer de nombreuses situations, par exemple les fonctions et les méthodes se distinguent en outre selon qu'elles ont des paramètres, quels paramètres elles ont, si elles ont des paramètres de longueur variable et si elles ont des paramètres clés.

Il est impossible de tout expliquer en détail, mais vous pouvez brièvement illustrer le processus général (en ignorant les détails des changements de paramètres) :

Comment les variables locales des fonctions Python sont-elles exécutées ? Une brève analyse de lapplication des variables de fonction Python

Descendez jusqu'à fast_function. Son appel ici est :

// ceval.c -> call_function

x = fast_function(func, pp_stack, n, na, nk);
Copier après la connexion

Explication du paramètre :

  1. func : entrant test;

  2. pp_stack : compréhension approximative de la pile d'appels (mode py) ;

  3. na : nombre de paramètres positionnels ;

  4. nk : nombre de mots-clés ;

  5. n = na + 2 * nk;

Puis prochaine étape Il suffit de voir quoi fast_function va faire l'affaire.

Initialiser une vague

  1. Définir co pour stocker l'objet de test à l'intérieur func_code

  2. Définir des globales pour stocker le test object Le func_globals inside (dictionnaire)

  3. définit des argdefs pour stocker le func_defaults à l'intérieur de l'objet de test (la valeur par défaut du paramètre mot-clé lors de la construction de la fonction)

Portons un jugement. Si argdefs 为空 && 传入的位置参数个数 == 函数定义时候的位置形参个数 && 没有传入关键字参数

alors

  1. utilisez 当前线程状态, co, globals Pour créer un nouvel objet de pilef;

  2. definefastlocals ( fastlocals = f->f_localsplus; );

  3. Tous les paramètres entrants sont remplis fastlocals

Alors la question est, comment les bourrer ? Comment savoir dans quels paramètres fantômes sont transmis : Cette question ne peut toujours être répondue que par dis :

Nous savons que cette étape est effectuée dans CALL_FUNCTION, donc l'action des paramètres de bourrage doit être dans Avant cela, donc :

 12          27 LOAD_NAME                2 (test)
             30 LOAD_CONST               4 (3)
             33 CALL_FUNCTION            1
             36 POP_TOP
             37 LOAD_CONST               1 (None)
             40 RETURN_VALUE
Copier après la connexion

Vous verrez CALL_FUNCTION ci-dessus 30 LOAD_CONST               4 (3) Les enfants intéressés peuvent essayer de transmettre quelques paramètres supplémentaires, et vous constaterez que les paramètres transmis sont dans l'ordre chargé dans. via LOAD_CONST , donc le problème de savoir comment trouver les paramètres devient évident

 ;
// fast_function 函数

fastlocals = f->f_localsplus;
stack = (*pp_stack) - n;

 for (i = 0; i <p>这里出现的 n 还记得怎么来的吗?回顾上面有个 <code>n = na + 2 * nk;</code> ,能想起什么吗?</p><p>其实这个地方就是简单的通过将 <code>pp_stack</code> 偏移 n 字节 找到一开始塞入参数的位置。</p><p>那么问题来了,如果 n 是 位置参数个数 + 关键字参数,那么 2 * nk 是什么意思?其实这答案很简单,那就是 关键字参数字节码 是属于带参数字节码, 是占 2字节。</p><p>到了这里,栈对象 <code>f</code> 的 <code>f_localsplus</code> 也登上历史舞台了,只是此时的它,还只是一个未经人事的少年,还需历练。</p><p>做好这些动作,终于来到真正执行函数的地方了: <code>PyEval_EvalFrameEx</code>,在这里,需要先交代下,有个和 <code>PyEval_EvalFrameEx</code> 很像的,叫 <code>PyEval_EvalCodeEx</code>,虽然长得像,但是人家干得活更多了。</p><p>请看回前面的 <code>fast_function</code> 开始那会有个判断,我们上面说得是判断成立的,也就是最简单的函数执行情况。如果函数传入多了关键字参数或者其他情况,那就复杂很多了,此时就需要由 <code>PyEval_EvalCodeEx</code> 处理一波,再执行 <code>PyEval_EvalFrameEx</code>。</p><p><code>PyEval_EvalFrameEx</code>  主要的工作就是解析字节码,像刚才的那些 <code>CALL_FUNCTION</code>,<code>LOAD_FAST</code> 等等,都是由它解析和处理的,它的本质就是一个死循环,然后里面有一堆 <code>swith - case</code>,这基本也就是 Python 的运行本质了。</p><h4>f_localsplus 存 和 取</h4><p>讲了这么长的一堆,算是把 Python 最基本的 函数调用过程简单扫了个盲,现在才开始探索主题。。</p><p>为了简单阐述,直接引用名词:<code>fastlocals</code>,  其中 <code>fastlocals = f->f_localsplus</code></p><p>刚才只是简单看到了,Python 会把传入的参数,以此塞入 <code>fastlocals</code> 里面去,那么毋庸置疑,传入的位置参数,必然属于局部变量了,那么关键字参数呢?那肯定也是局部变量,因为它们都被特殊对待了嘛。</p><p>那么除了函数参数之外,必然还有函数内部的赋值咯? 这块字节码也一早在上面给出了:</p><pre class="brush:php;toolbar:false"># CALL_FUNCTION
  5           0 LOAD_CONST               1 ('test')
              3 STORE_FAST               1 (c)
Copier après la connexion

这里出现了新的字节码 STORE_FAST,一起来看看实现把:

# PyEval_EvalFrameEx 庞大 switch-case 的其中一个分支:

        PREDICTED_WITH_ARG(STORE_FAST);
        TARGET(STORE_FAST)
        {
            v = POP();
            SETLOCAL(oparg, v);
            FAST_DISPATCH();
        }

# 因为有涉及到宏,就顺便给出:
#define GETLOCAL(i)     (fastlocals[i])
#define SETLOCAL(i, value)      do { PyObject *tmp = GETLOCAL(i); \
                                     GETLOCAL(i) = value; \
                                     Py_XDECREF(tmp); } while (0)
Copier après la connexion

简单解释就是,将 POP() 获得的值 v,塞到 fastlocals 的  oparg 位置上。此处,v 是 "test", oparg 就是 1。用图表示就是:

Comment les variables locales des fonctions Python sont-elles exécutées ? Une brève analyse de lapplication des variables de fonction Python

有童鞋可能会突然懵了,为什么突然来了个 b ?我们又需要回到上面看 test 函数是怎样定义的:

// 我感觉往回看的概率超低的,直接给出算了

def test(b):
    c = 'test'    
    print b   # 局部变量
    print c   # 局部变量
Copier après la connexion

看到函数定义其实都应该知道了,因为 b 是传的参数啊,老早就塞进去了~

那存储知道了,那么怎么取呢?同样也是这段代码的字节码:

22 LOAD_FAST                1 (c)
Copier après la connexion

虽然这个用脚趾头想想都知道原理是啥,但公平起见还是给出相应的代码:

# PyEval_EvalFrameEx 庞大 switch-case 的其中一个分支:
TARGET(LOAD_FAST)
{
    x = GETLOCAL(oparg);
    if (x != NULL) {
        Py_INCREF(x);
        PUSH(x);
        FAST_DISPATCH();
    }
    format_exc_check_arg(PyExc_UnboundLocalError,
        UNBOUNDLOCAL_ERROR_MSG,
        PyTuple_GetItem(co->co_varnames, oparg));
    break;
}
Copier après la connexion

直接用 GETLOCAL 通过索引在数组里取值了。

到了这里,应该也算是把 f_localsplus  讲明白了。这个地方不难,其实一般而言是不会被提及到这个,因为一般来说忽略即可了,但是如果说想在性能方面讲究点,那么这个小知识就不得忽视了。

变量使用姿势

因为是面向对象,所以我们都习惯了通过 class 的方式,对于下面的使用方式,也是随手就来:

class SS(object):
    def __init__(self):
        self.fuck = {}

    def test(self):
        print self.fuck
Copier après la connexion

这种方式一般是没什么问题的,也很规范。到那时如果是下面的操作,那就有问题了:

class SS(object):
    def __init__(self):
        self.fuck = {}

    def test(self):
        num = 10
        for i in range(num):
            self.fuck[i] = i
Copier après la connexion

这段代码的性能损耗,会随着 num 的值增大而增大, 如果下面循环中还要涉及到更多类属性的读取、修改等等,那影响就更大了

这个类属性如果换成 全局变量,也会存在类似的问题,只是说在操作类属性会比操作全局变量要频繁得多。

我们直接看看两者的差距有多大把?

import timeit
class SS(object):
    def test(self):
        num = 100
        self.fuck = {}        # 为了公平,每次执行都同样初始化新的 {}
        for i in range(num):
            self.fuck[i] = i

    def test_local(self):
        num = 100
        fuck = {}             # 为了公平,每次执行都同样初始化新的 {}
        for i in range(num):
            fuck[i] = i
        self.fuck = fuck

s = SS()
print timeit.timeit(stmt=s.test_local)
print timeit.timeit(stmt=s.test)
Copier après la connexion

Comment les variables locales des fonctions Python sont-elles exécutées ? Une brève analyse de lapplication des variables de fonction Python

通过上图可以看出,随着 num 的值越大,for 循环的次数就越多,那么两者的差距也就越大了。

那么为什么会这样,也是在字节码可以看出写端倪:

// s.test
        >>   28 FOR_ITER                19 (to 50)
             31 STORE_FAST               2 (i)

  8          34 LOAD_FAST                2 (i)
             37 LOAD_FAST                0 (self)
             40 LOAD_ATTR                0 (hehe)
             43 LOAD_FAST                2 (i)
             46 STORE_SUBSCR
             47 JUMP_ABSOLUTE           28
        >>   50 POP_BLOCK

// s.test_local
        >>   25 FOR_ITER                16 (to 44)
             28 STORE_FAST               3 (i)

 14          31 LOAD_FAST                3 (i)
             34 LOAD_FAST                2 (hehe)
             37 LOAD_FAST                3 (i)
             40 STORE_SUBSCR
             41 JUMP_ABSOLUTE           25
        >>   44 POP_BLOCK

 15     >>   45 LOAD_FAST                2 (hehe)
             48 LOAD_FAST                0 (self)
             51 STORE_ATTR               1 (hehe)
Copier après la connexion

上面两段就是两个方法的 for block 内容,大家对比下就会知道,  s.test 相比于 s.test_local,  多了个 LOAD_ATTR 放在 FOR_ITERPOP_BLOCK 之间。

这说明什么呢? 这说明,在每次循环时,s.test 都需要 LOAD_ATTR,很自然的,我们需要看看这个是干什么的:

TARGET(LOAD_ATTR)
{
     w = GETITEM(names, oparg);
     v = TOP();
     x = PyObject_GetAttr(v, w);
     Py_DECREF(v);
     SET_TOP(x);
     if (x != NULL) DISPATCH();
     break;
 }

# 相关宏定义
#define GETITEM(v, i) PyTuple_GetItem((v), (i))
Copier après la connexion

这里出现了一个陌生的变量 name, 这是什么?其实这个就是每个 codeobject 所维护的一个 名字数组,基本上每个块所使用到的字符串,都会在这里面存着,同样也是有序的:

// PyCodeObject 结构体成员
PyObject *co_names;        /* list of strings (names used) */
Copier après la connexion

那么 LOAD_ATTR 的任务就很清晰了:先从名字列表里面取出字符串,结果就是 "hehe", 然后通过 PyObject_GetAttr 去查找,在这里就是在 s 实例中去查找。

且不说查找效率如何,光多了这一步,都能失之毫厘差之千里了,当然这是在频繁操作次数比较多的情况下。

所以我们在一些会频繁操作 类/实例属性 的情况下,应该是先把 属性 取出来存到 局部变量,然后用 局部变量 来完成操作。最后视情况把变动更新到属性上。

最后

其实相比变量,在函数和方法的使用上面更有学问,更值得探索,因为那个原理和表面看起来差别更大,下次有机会再探讨。平时工作多注意下,才能使得我们的 PY 能够稍微快点点点点点。

相关推荐:

理解python的全局变量和局部变量

python函数局部变量用法实例分析

详解Python的局部变量和全局变量使用难点

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal
À propos de nous Clause de non-responsabilité Sitemap
Site Web PHP chinois:Formation PHP en ligne sur le bien-être public,Aidez les apprenants PHP à grandir rapidement!