Le contenu de cet article explique comment implémenter l'algorithme d'arbre de décision en Python ? (code). Il a une certaine valeur de référence. Les amis dans le besoin peuvent s'y référer.
Description des données
Chaque élément de données est stocké dans une liste et la dernière colonne stocke le résultat
Plusieurs éléments de données forment un ensemble de données
data=[[d1,d2,d3...dn,result], [d1,d2,d3...dn,result], . . [d1,d2,d3...dn,result]]
Structure des données de l'arbre de décision
class DecisionNode: '''决策树节点 ''' def __init__(self,col=-1,value=None,results=None,tb=None,fb=None): '''初始化决策树节点 args: col -- 按数据集的col列划分数据集 value -- 以value作为划分col列的参照 result -- 只有叶子节点有,代表最终划分出的子数据集结果统计信息。{‘结果’:结果出现次数} rb,fb -- 代表左右子树 ''' self.col=col self.value=value self.results=results self.tb=tb self.fb=fb
Le résultat final de la classification de l'arbre de décision est de diviser les éléments de données en plusieurs sous-ensembles , dont chacun Les résultats des ensembles sont les mêmes, nous utilisons donc ici la méthode de {'result' : le nombre d'occurrences du résultat} pour exprimer chaque sous-ensemble
def pideset(rows,column,value): '''依据数据集rows的column列的值,判断其与参考值value的关系对数据集进行拆分 返回两个数据集 ''' split_function=None #value是数值类型 if isinstance(value,int) or isinstance(value,float): #定义lambda函数当row[column]>=value时返回true split_function=lambda row:row[column]>=value #value是字符类型 else: #定义lambda函数当row[column]==value时返回true split_function=lambda row:row[column]==value #将数据集拆分成两个 set1=[row for row in rows if split_function(row)] set2=[row for row in rows if not split_function(row)] #返回两个数据集 return (set1,set2) def uniquecounts(rows): '''计算数据集rows中有几种最终结果,计算结果出现次数,返回一个字典 ''' results={} for row in rows: r=row[len(row)-1] if r not in results: results[r]=0 results[r]+=1 return results def giniimpurity(rows): '''返回rows数据集的基尼不纯度 ''' total=len(rows) counts=uniquecounts(rows) imp=0 for k1 in counts: p1=float(counts[k1])/total for k2 in counts: if k1==k2: continue p2=float(counts[k2])/total imp+=p1*p2 return imp def entropy(rows): '''返回rows数据集的熵 ''' from math import log log2=lambda x:log(x)/log(2) results=uniquecounts(rows) ent=0.0 for r in results.keys(): p=float(results[r])/len(rows) ent=ent-p*log2(p) return ent def build_tree(rows,scoref=entropy): '''构造决策树 ''' if len(rows)==0: return DecisionNode() current_score=scoref(rows) # 最佳信息增益 best_gain=0.0 # best_criteria=None #最佳划分 best_sets=None column_count=len(rows[0])-1 #遍历数据集的列,确定分割顺序 for col in range(0,column_count): column_values={} # 构造字典 for row in rows: column_values[row[col]]=1 for value in column_values.keys(): (set1,set2)=pideset(rows,col,value) p=float(len(set1))/len(rows) # 计算信息增益 gain=current_score-p*scoref(set1)-(1-p)*scoref(set2) if gain>best_gain and len(set1)>0 and len(set2)>0: best_gain=gain best_criteria=(col,value) best_sets=(set1,set2) # 如果划分的两个数据集熵小于原数据集,进一步划分它们 if best_gain>0: trueBranch=build_tree(best_sets[0]) falseBranch=build_tree(best_sets[1]) return DecisionNode(col=best_criteria[0],value=best_criteria[1], tb=trueBranch,fb=falseBranch) # 如果划分的两个数据集熵不小于原数据集,停止划分 else: return DecisionNode(results=uniquecounts(rows)) def print_tree(tree,indent=''): if tree.results!=None: print(str(tree.results)) else: print(str(tree.col)+':'+str(tree.value)+'? ') print(indent+'T->',end='') print_tree(tree.tb,indent+' ') print(indent+'F->',end='') print_tree(tree.fb,indent+' ') def getwidth(tree): if tree.tb==None and tree.fb==None: return 1 return getwidth(tree.tb)+getwidth(tree.fb) def getdepth(tree): if tree.tb==None and tree.fb==None: return 0 return max(getdepth(tree.tb),getdepth(tree.fb))+1 def drawtree(tree,jpeg='tree.jpg'): w=getwidth(tree)*100 h=getdepth(tree)*100+120 img=Image.new('RGB',(w,h),(255,255,255)) draw=ImageDraw.Draw(img) drawnode(draw,tree,w/2,20) img.save(jpeg,'JPEG') def drawnode(draw,tree,x,y): if tree.results==None: # Get the width of each branch w1=getwidth(tree.fb)*100 w2=getwidth(tree.tb)*100 # Determine the total space required by this node left=x-(w1+w2)/2 right=x+(w1+w2)/2 # Draw the condition string draw.text((x-20,y-10),str(tree.col)+':'+str(tree.value),(0,0,0)) # Draw links to the branches draw.line((x,y,left+w1/2,y+100),fill=(255,0,0)) draw.line((x,y,right-w2/2,y+100),fill=(255,0,0)) # Draw the branch nodes drawnode(draw,tree.fb,left+w1/2,y+100) drawnode(draw,tree.tb,right-w2/2,y+100) else: txt=' \n'.join(['%s:%d'%v for v in tree.results.items()]) draw.text((x-20,y),txt,(0,0,0))
de classer les données de tests (avec traitement des données manquantes)
def mdclassify(observation,tree): '''对缺失数据进行分类 args: observation -- 发生信息缺失的数据项 tree -- 训练完成的决策树 返回代表该分类的结果字典 ''' # 判断数据是否到达叶节点 if tree.results!=None: # 已经到达叶节点,返回结果result return tree.results else: # 对数据项的col列进行分析 v=observation[tree.col] # 若col列数据缺失 if v==None: #对tree的左右子树分别使用mdclassify,tr是左子树得到的结果字典,fr是右子树得到的结果字典 tr,fr=mdclassify(observation,tree.tb),mdclassify(observation,tree.fb) # 分别以结果占总数比例计算得到左右子树的权重 tcount=sum(tr.values()) fcount=sum(fr.values()) tw=float(tcount)/(tcount+fcount) fw=float(fcount)/(tcount+fcount) result={} # 计算左右子树的加权平均 for k,v in tr.items(): result[k]=v*tw for k,v in fr.items(): # fr的结果k有可能并不在tr中,在result中初始化k if k not in result: result[k]=0 # fr的结果累加到result中 result[k]+=v*fw return result # col列没有缺失,继续沿决策树分类 else: if isinstance(v,int) or isinstance(v,float): if v>=tree.value: branch=tree.tb else: branch=tree.fb else: if v==tree.value: branch=tree.tb else: branch=tree.fb return mdclassify(observation,branch) tree=build_tree(my_data) print(mdclassify(['google',None,'yes',None],tree)) print(mdclassify(['google','France',None,None],tree))
Élagage d'arbre de décision
def prune(tree,mingain): '''对决策树进行剪枝 args: tree -- 决策树 mingain -- 最小信息增益 返回 ''' # 修剪非叶节点 if tree.tb.results==None: prune(tree.tb,mingain) if tree.fb.results==None: prune(tree.fb,mingain) #合并两个叶子节点 if tree.tb.results!=None and tree.fb.results!=None: tb,fb=[],[] for v,c in tree.tb.results.items(): tb+=[[v]]*c for v,c in tree.fb.results.items(): fb+=[[v]]*c #计算熵减少情况 delta=entropy(tb+fb)-(entropy(tb)+entropy(fb)/2) #熵的增加量小于mingain,可以合并分支 if delta<mingain: tree.tb,tree.fb=None,None tree.results=uniquecounts(tb+fb)
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!