


Comment implémenter pivot() dans pandas.DataFrame pour convertir des lignes en colonnes (code)
Le contenu de cet article explique comment pivot() dans pandas.DataFrame implémente la conversion de lignes (code). Il a une certaine valeur de référence. Les amis dans le besoin peuvent s'y référer.
Exemple :
Le tableau suivant nécessite une conversion de lignes :
Le code est le suivant :
# -*- coding:utf-8 -*- import pandas as pd import MySQLdb from warnings import filterwarnings # 由于create table if not exists总会抛出warning,因此使用filterwarnings消除 filterwarnings('ignore', category = MySQLdb.Warning) from sqlalchemy import create_engine import sys if sys.version_info.major<3: reload(sys) sys.setdefaultencoding("utf-8") # 此脚本适用于python2和python3 host,port,user,passwd,db,charset="192.168.1.193",3306,"leo","mysql","test","utf8" def get_df(): global host,port,user,passwd,db,charset conn_config={"host":host, "port":port, "user":user, "passwd":passwd, "db":db,"charset":charset} conn = MySQLdb.connect(**conn_config) result_df=pd.read_sql('select UserName,Subject,Score from TEST',conn) return result_df def pivot(result_df): df_pivoted_init=result_df.pivot('UserName','Subject','Score') df_pivoted = df_pivoted_init.reset_index() # 将行索引也作为DataFrame值的一部分,以方便存储数据库 return df_pivoted_init,df_pivoted # 返回的两个DataFrame,一个是以姓名作index的,一个是以数字序列作index,前者用于unpivot,后者用于save_to_mysql def unpivot(df_pivoted_init): # unpivot需要进行df_pivoted_init二维表格的行、列索引遍历,需要拼SQL因此不能使用save_to_mysql存数据,这里使用SQL和MySQLdb接口存 insert_sql="insert into test_unpivot(UserName,Subject,Score) values " # 处理值为NaN的情况 df_pivoted_init=df_pivoted_init.add(0,fill_value=0) for col in df_pivoted_init.columns: for index in df_pivoted_init.index: value=df_pivoted_init.at[index,col] if value!=0: insert_sql=insert_sql+"('%s','%s',%s)" %(index,col,value)+',' insert_sql = insert_sql.strip(',') global host, port, user, passwd, db, charset conn_config = {"host": host, "port": port, "user": user, "passwd": passwd, "db": db, "charset": charset} conn = MySQLdb.connect(**conn_config) cur=conn.cursor() cur.execute("create table if not exists test_unpivot like TEST") cur.execute(insert_sql) conn.commit() conn.close() def save_to_mysql(df_pivoted,tablename): global host, port, user, passwd, db, charset """ 只有使用sqllite时才能指定con=connection实例,其他数据库需要使用sqlalchemy生成engine,engine的定义可以添加?来设置字符集和其他属性 """ conn="mysql://%s:%s@%s:%d/%s?charset=%s" %(user,passwd,host,port,db,charset) mysql_engine = create_engine(conn) df_pivoted.to_sql(name=tablename, con=mysql_engine, if_exists='replace', index=False) # 从TEST表读取源数据至DataFrame结构 result_df=get_df() # 将源数据行转列为二维表格形式 df_pivoted_init,df_pivoted=pivot(result_df) # 将二维表格形式的数据存到新表test中 save_to_mysql(df_pivoted,'test') # 将被行转列的数据unpivot,存入test_unpivot表中 unpivot(df_pivoted_init)
Le résultat est le suivant :
À propos de la méthode pivot fournie avec la classe Pandas DataFrame :
DataFrame.pivot (index=Aucun, colonnes =Aucun, valeurs=Aucun) :
Renvoie le DataFrame remodelé organisé par valeurs d'index/colonne données.
Il y a il n'y a que 3 paramètres ici, qui sont Parce que le résultat après pivot doit être un tableau bidimensionnel, qui ne nécessite que des lignes et des colonnes et leurs valeurs correspondantes, et parce qu'il s'agit d'un tableau bidimensionnel, la colonne is_pass sera définitivement perdue après unpivot, donc je n'ai pas vérifié cette colonne au début.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

Cet article guide les développeurs Python sur la construction d'interfaces de ligne de commande (CLI). Il détaille à l'aide de bibliothèques comme Typer, Click et Argparse, mettant l'accent sur la gestion des entrées / sorties et promouvant des modèles de conception conviviaux pour une meilleure convivialité par la CLI.

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

L'article traite du rôle des environnements virtuels dans Python, en se concentrant sur la gestion des dépendances du projet et l'évitement des conflits. Il détaille leur création, leur activation et leurs avantages pour améliorer la gestion de projet et réduire les problèmes de dépendance.

Les expressions régulières sont des outils puissants pour la correspondance des motifs et la manipulation du texte dans la programmation, améliorant l'efficacité du traitement de texte sur diverses applications.
