Maison développement back-end Tutoriel Python Introduction à la méthode de lecture des données personnalisées pour le projet de classificateur Tensorflow (exemple de code)

Introduction à la méthode de lecture des données personnalisées pour le projet de classificateur Tensorflow (exemple de code)

Feb 11, 2019 am 10:28 AM
input python tensorflow

Cet article vous présente une introduction à la méthode de lecture des données personnalisées pour le projet de classificateur Tensorflow (exemple de code). Il a une certaine valeur de référence. Les amis dans le besoin peuvent s'y référer, j'espère que cela vous aidera. toi.

Lecture des données personnalisées du projet de classificateur Tensorflow

Après avoir tapé le code du projet de classificateur selon la démo sur le site officiel de Tensorflow, l'opération a réussi Pas mal non plus. . Mais en fin de compte, je dois encore entraîner mes propres données, j'ai donc essayé de me préparer au chargement de données personnalisées. Cependant, fashion_mnist.load_data() n'est apparu que dans la démo sans processus de lecture détaillé. Ensuite, j'ai trouvé quelques informations et expliqué le. processus de lecture. Enregistré ici.

Tout d'abord, permettez-moi de mentionner les modules qui doivent être utilisés :

import os

import keras
import matplotlib.pyplot as plt
from PIL import Image
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
Copier après la connexion

Projet de classificateur d'images, déterminez d'abord quelle sera la résolution de l'image que vous souhaitez traiter, la exemple voici 30 pixels :

IMG_SIZE_X = 30
IMG_SIZE_Y = 30
Copier après la connexion

Déterminez ensuite le répertoire de vos photos :

image_path = r'D:\Projects\ImageClassifier\data\set'
path = ".\data"
# 你也可以使用相对路径的方式
# image_path =os.path.join(path, "set")
Copier après la connexion

La structure sous le répertoire est la suivante :

Introduction à la méthode de lecture des données personnalisées pour le projet de classificateur Tensorflow (exemple de code)

Le label.txt correspondant est le suivant :

动漫
风景
美女
物语
樱花
Copier après la connexion

Ensuite, il est connecté au labels.txt, comme suit :

label_name = "labels.txt"
label_path = os.path.join(path, label_name)
class_names = np.loadtxt(label_path, type(""))
Copier après la connexion

Pour le bien de simplicité ici, la fonction loadtxt de numpy est directement utilisée pour le charger directement.

Après cela, les données d'image sont officiellement traitées et les commentaires sont écrits à l'intérieur :

re_load = False
re_build = False
# re_load = True
re_build = True

data_name = "data.npz"
data_path = os.path.join(path, data_name)
model_name = "model.h5"
model_path = os.path.join(path, model_name)

count = 0

# 这里判断是否存在序列化之后的数据,re_load是一个开关,是否强制重新处理,测试用,可以去除。
if not os.path.exists(data_path) or re_load:
    labels = []
    images = []
    print('Handle images')
    # 由于label.txt是和图片防止目录的分类目录一一对应的,即每个子目录的目录名就是labels.txt里的一个label,所以这里可以通过读取class_names的每一项去拼接path后读取
    for index, name in enumerate(class_names):
        # 这里是拼接后的子目录path
        classpath = os.path.join(image_path, name)
        # 先判断一下是否是目录
        if not os.path.isdir(classpath):
            continue
        # limit是测试时候用的这里可以去除
        limit = 0
        for image_name in os.listdir(classpath):
            if limit >= max_size:
                break
            # 这里是拼接后的待处理的图片path
            imagepath = os.path.join(classpath, image_name)
            count = count + 1
            limit = limit + 1
            # 利用Image打开图片
            img = Image.open(imagepath)
            # 缩放到你最初确定要处理的图片分辨率大小
            img = img.resize((IMG_SIZE_X, IMG_SIZE_Y))
            # 转为灰度图片,这里彩色通道会干扰结果,并且会加大计算量
            img = img.convert("L")
            # 转为numpy数组
            img = np.array(img)
            # 由(30,30)转为(1,30,30)(即`channels_first`),当然你也可以转换为(30,30,1)(即`channels_last`)但为了之后预览处理后的图片方便这里采用了(1,30,30)的格式存放
            img = np.reshape(img, (1, IMG_SIZE_X, IMG_SIZE_Y))
            # 这里利用循环生成labels数据,其中存放的实际是class_names中对应元素的索引
            labels.append([index])
            # 添加到images中,最后统一处理
            images.append(img)
            # 循环中一些状态的输出,可以去除
            print("{} class: {} {} limit: {} {}"
                  .format(count, index + 1, class_names[index], limit, imagepath))
    # 最后一次性将images和labels都转换成numpy数组
    npy_data = np.array(images)
    npy_labels = np.array(labels)
    # 处理数据只需要一次,所以我们选择在这里利用numpy自带的方法将处理之后的数据序列化存储
    np.savez(data_path, x=npy_data, y=npy_labels)
    print("Save images by npz")
else:
    # 如果存在序列化号的数据,便直接读取,提高速度
    npy_data = np.load(data_path)["x"]
    npy_labels = np.load(data_path)["y"]
    print("Load images by npz")
image_data = npy_data
labels_data = npy_labels
Copier après la connexion

À ce stade, le traitement et le prétraitement des données originales sont terminés. la dernière étape est nécessaire et les résultats renvoyés par fashion_mnist.load_data() dans la démo sont les mêmes. Le code est le suivant :

# 最后一步就是将原始数据分成训练数据和测试数据
train_images, test_images, train_labels, test_labels = \
    train_test_split(image_data, labels_data, test_size=0.2, random_state=6)
Copier après la connexion

La méthode d'impression des informations pertinentes est également jointe ici :

print("_________________________________________________________________")
print("%-28s %-s" % ("Name", "Shape"))
print("=================================================================")
print("%-28s %-s" % ("Image Data", image_data.shape))
print("%-28s %-s" % ("Labels Data", labels_data.shape))
print("=================================================================")

print('Split train and test data,p=%')
print("_________________________________________________________________")
print("%-28s %-s" % ("Name", "Shape"))
print("=================================================================")
print("%-28s %-s" % ("Train Images", train_images.shape))
print("%-28s %-s" % ("Test Images", test_images.shape))
print("%-28s %-s" % ("Train Labels", train_labels.shape))
print("%-28s %-s" % ("Test Labels", test_labels.shape))
print("=================================================================")
Copier après la connexion

N'oubliez pas de normaliser après cela :

print("Normalize images")
train_images = train_images / 255.0
test_images = test_images / 255.0
Copier après la connexion

Enfin, le code complet de lecture des données personnalisées est joint :

import os

import keras
import matplotlib.pyplot as plt
from PIL import Image
from keras.layers import *
from keras.models import *
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
re_load = False
re_build = False
# re_load = True
re_build = True
epochs = 50
batch_size = 5
count = 0
max_size = 2000000000
IMG_SIZE_X = 30
IMG_SIZE_Y = 30
np.random.seed(9277)
image_path = r'D:\Projects\ImageClassifier\data\set'
path = ".\data"
data_name = "data.npz"
data_path = os.path.join(path, data_name)
model_name = "model.h5"
model_path = os.path.join(path, model_name)
label_name = "labels.txt"
label_path = os.path.join(path, label_name)
class_names = np.loadtxt(label_path, type(""))
print('Load class names')
if not os.path.exists(data_path) or re_load:
    labels = []
    images = []
    print('Handle images')
    for index, name in enumerate(class_names):
        classpath = os.path.join(image_path, name)
        if not os.path.isdir(classpath):
            continue
        limit = 0
        for image_name in os.listdir(classpath):
            if limit >= max_size:
                break
            imagepath = os.path.join(classpath, image_name)
            count = count + 1
            limit = limit + 1
            img = Image.open(imagepath)
            img = img.resize((30, 30))
            img = img.convert("L")
            img = np.array(img)
            img = np.reshape(img, (1, 30, 30))
            # img = skimage.io.imread(imagepath, as_grey=True)
            # if img.shape[2] != 3:
            #     print("{} shape is {}".format(image_name, img.shape))
            #     continue
            # data = transform.resize(img, (IMG_SIZE_X, IMG_SIZE_Y))
            labels.append([index])
            images.append(img)
            print("{} class: {} {} limit: {} {}"
                  .format(count, index + 1, class_names[index], limit, imagepath))
    npy_data = np.array(images)
    npy_labels = np.array(labels)
    np.savez(data_path, x=npy_data, y=npy_labels)
    print("Save images by npz")
else:
    npy_data = np.load(data_path)["x"]
    npy_labels = np.load(data_path)["y"]
    print("Load images by npz")
image_data = npy_data
labels_data = npy_labels
print("_________________________________________________________________")
print("%-28s %-s" % ("Name", "Shape"))
print("=================================================================")
print("%-28s %-s" % ("Image Data", image_data.shape))
print("%-28s %-s" % ("Labels Data", labels_data.shape))
print("=================================================================")
train_images, test_images, train_labels, test_labels = \
    train_test_split(image_data, labels_data, test_size=0.2, random_state=6)
print('Split train and test data,p=%')
print("_________________________________________________________________")
print("%-28s %-s" % ("Name", "Shape"))
print("=================================================================")
print("%-28s %-s" % ("Train Images", train_images.shape))
print("%-28s %-s" % ("Test Images", test_images.shape))
print("%-28s %-s" % ("Train Labels", train_labels.shape))
print("%-28s %-s" % ("Test Labels", test_labels.shape))
print("=================================================================")

# 归一化
# 我们将这些值缩小到 0 到 1 之间,然后将其馈送到神经网络模型。为此,将图像组件的数据类型从整数转换为浮点数,然后除以 255。以下是预处理图像的函数:
# 务必要以相同的方式对训练集和测试集进行预处理:
print("Normalize images")
train_images = train_images / 255.0
test_images = test_images / 255.0
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: différents paradigmes expliqués PHP et Python: différents paradigmes expliqués Apr 18, 2025 am 12:26 AM

PHP est principalement la programmation procédurale, mais prend également en charge la programmation orientée objet (POO); Python prend en charge une variété de paradigmes, y compris la POO, la programmation fonctionnelle et procédurale. PHP convient au développement Web, et Python convient à une variété d'applications telles que l'analyse des données et l'apprentissage automatique.

Choisir entre PHP et Python: un guide Choisir entre PHP et Python: un guide Apr 18, 2025 am 12:24 AM

PHP convient au développement Web et au prototypage rapide, et Python convient à la science des données et à l'apprentissage automatique. 1.Php est utilisé pour le développement Web dynamique, avec une syntaxe simple et adapté pour un développement rapide. 2. Python a une syntaxe concise, convient à plusieurs champs et a un écosystème de bibliothèque solide.

Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Apr 16, 2025 am 12:12 AM

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.

Le code Visual Studio peut-il être utilisé dans Python Le code Visual Studio peut-il être utilisé dans Python Apr 15, 2025 pm 08:18 PM

VS Code peut être utilisé pour écrire Python et fournit de nombreuses fonctionnalités qui en font un outil idéal pour développer des applications Python. Il permet aux utilisateurs de: installer des extensions Python pour obtenir des fonctions telles que la réalisation du code, la mise en évidence de la syntaxe et le débogage. Utilisez le débogueur pour suivre le code étape par étape, trouver et corriger les erreurs. Intégrez Git pour le contrôle de version. Utilisez des outils de mise en forme de code pour maintenir la cohérence du code. Utilisez l'outil de liaison pour repérer les problèmes potentiels à l'avance.

PHP et Python: une plongée profonde dans leur histoire PHP et Python: une plongée profonde dans leur histoire Apr 18, 2025 am 12:25 AM

PHP est originaire en 1994 et a été développé par Rasmuslerdorf. Il a été utilisé à l'origine pour suivre les visiteurs du site Web et a progressivement évolué en un langage de script côté serveur et a été largement utilisé dans le développement Web. Python a été développé par Guidovan Rossum à la fin des années 1980 et a été publié pour la première fois en 1991. Il met l'accent sur la lisibilité et la simplicité du code, et convient à l'informatique scientifique, à l'analyse des données et à d'autres domaines.

Comment exécuter des programmes dans Terminal Vscode Comment exécuter des programmes dans Terminal Vscode Apr 15, 2025 pm 06:42 PM

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

Peut-on exécuter le code sous Windows 8 Peut-on exécuter le code sous Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code peut fonctionner sur Windows 8, mais l'expérience peut ne pas être excellente. Assurez-vous d'abord que le système a été mis à jour sur le dernier correctif, puis téléchargez le package d'installation VS Code qui correspond à l'architecture du système et l'installez comme invité. Après l'installation, sachez que certaines extensions peuvent être incompatibles avec Windows 8 et doivent rechercher des extensions alternatives ou utiliser de nouveaux systèmes Windows dans une machine virtuelle. Installez les extensions nécessaires pour vérifier si elles fonctionnent correctement. Bien que le code VS soit possible sur Windows 8, il est recommandé de passer à un système Windows plus récent pour une meilleure expérience de développement et une meilleure sécurité.

L'extension VScode est-elle malveillante? L'extension VScode est-elle malveillante? Apr 15, 2025 pm 07:57 PM

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

See all articles