


Une brève discussion sur la technologie des entrepôts de données
Cet article parle principalement de la conception de l'architecture logique de l'entrepôt de données, qui a une certaine valeur d'apprentissage. Les amis intéressés peuvent en apprendre davantage.
Les entrepôts de données hors ligne sont généralement construits sur la base de la théorie de la modélisation dimensionnelle. Les entrepôts de données hors ligne sont généralement superposés de manière logique, principalement pour les considérations suivantes :
Isolement : Les utilisateurs doivent. utilisez des données qui ont été soigneusement traitées par l'équipe chargée des données, plutôt que des données brutes provenant du système d'entreprise. Le premier avantage est que les utilisateurs utilisent des données soigneusement préparées, standardisées et propres d'un point de vue commercial. Très facile à comprendre et à utiliser. Deuxièmement, si le système métier en amont est modifié ou même reconstruit (comme la structure des tables, les champs, la signification métier, etc.), l'équipe de données sera responsable de gérer tous ces changements et de minimiser l'impact sur les utilisateurs en aval.
2. Performances et maintenabilité : Les professionnels font des choses professionnelles. La superposition des données fait que le traitement des données est essentiellement effectué par l'équipe de données, de sorte que la même logique métier n'a pas besoin d'être exécutée à plusieurs reprises. , économisant ainsi les frais de stockage et de calcul correspondants. De plus, la superposition de données rend également la maintenance de l'entrepôt de données claire et pratique. Chaque couche n'est responsable que de ses propres tâches. S'il y a un problème avec le traitement des données sur une certaine couche, il vous suffit de modifier cette couche.
3. Normativité : Pour une entreprise et une organisation, le calibre des données est très important Quand tout le monde parle d'un indicateur, il faut qu'il se base sur un calibre clair et reconnu. Les tableaux, champs et mesures doivent être standardisés.
4. Couche ODS : La table de données du système source de l'entrepôt de données est généralement stockée intacte. C'est ce qu'on appelle la couche ODS (Operation Data Store), et la couche ODS est souvent également connue. en tant que zone intermédiaire, ils sont la source de traitement des données pour la couche d'entrepôt de données suivante (c'est-à-dire la couche de table de faits et de table de dimension générée sur la base de la modélisation dimensionnelle de Kimball, et les données de la couche récapitulative traitées sur la base de ces tables de faits et tables de détail) Dans le même temps, la couche ODS stocke également des données historiques incrémentielles ou des données complètes.
5. Couches DWD et DWS : Data Warehouse Detail (DWD) et Data Warehouse Summary (DWS) font l'objet de l'entrepôt de données. Les données des couches DWD et DWS sont générées par la couche ODS après nettoyage, conversion et chargement ETL, et elles sont généralement construites sur la base de la théorie de modélisation dimensionnelle de Kimball, et les dimensions de chaque sous-thème sont garanties par des dimensions et des bus de données cohérents. cohérence.
6. Couche application (ADS) : La couche application est principalement le data mart (Data Mart, DM) établi par chaque entreprise ou département sur la base du DWD et du DWS. est relatif à l'entrepôt de données (Data Warehouse, DW) de DWD et DWS. De manière générale, les données de la couche application proviennent de la couche DW, mais en principe, l'accès direct à la couche ODS n'est pas autorisé. De plus, par rapport à la couche DW, la couche application ne contient que des données de couche détaillées et récapitulatives qui intéressent les départements ou les parties eux-mêmes.
Si vous souhaitez connaître plus de tutoriels techniques, assurez-vous de faire attention au Site Web PHP chinois !
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

L'article discute de l'utilisation de l'instruction ALTER TABLE de MySQL pour modifier les tables, notamment en ajoutant / abandon les colonnes, en renommant des tables / colonnes et en modifiant les types de données de colonne.

L'article discute de la configuration du cryptage SSL / TLS pour MySQL, y compris la génération et la vérification de certificat. Le problème principal est d'utiliser les implications de sécurité des certificats auto-signés. [Compte de caractère: 159]

L'article traite des outils de GUI MySQL populaires comme MySQL Workbench et PhpMyAdmin, en comparant leurs fonctionnalités et leur pertinence pour les débutants et les utilisateurs avancés. [159 caractères]

L'article traite des stratégies pour gérer de grands ensembles de données dans MySQL, y compris le partitionnement, la rupture, l'indexation et l'optimisation des requêtes.

Les capacités de recherche en texte intégral d'InNODB sont très puissantes, ce qui peut considérablement améliorer l'efficacité de la requête de la base de données et la capacité de traiter de grandes quantités de données de texte. 1) INNODB implémente la recherche de texte intégral via l'indexation inversée, prenant en charge les requêtes de recherche de base et avancées. 2) Utilisez la correspondance et contre les mots clés pour rechercher, prendre en charge le mode booléen et la recherche de phrases. 3) Les méthodes d'optimisation incluent l'utilisation de la technologie de segmentation des mots, la reconstruction périodique des index et l'ajustement de la taille du cache pour améliorer les performances et la précision.

L'article discute de la suppression des tables dans MySQL en utilisant l'instruction TABLE DROP, mettant l'accent sur les précautions et les risques. Il souligne que l'action est irréversible sans sauvegardes, détaillant les méthodes de récupération et les risques potentiels de l'environnement de production.

L'article discute de l'utilisation de clés étrangères pour représenter les relations dans les bases de données, en se concentrant sur les meilleures pratiques, l'intégrité des données et les pièges communs à éviter.

L'article discute de la création d'index sur les colonnes JSON dans diverses bases de données comme PostgreSQL, MySQL et MongoDB pour améliorer les performances de la requête. Il explique la syntaxe et les avantages de l'indexation des chemins JSON spécifiques et répertorie les systèmes de base de données pris en charge.
