


MySQL crée rapidement des dizaines de millions de données de test
Remarque : le volume de données de cet article est de 100 W. Si vous voulez des dizaines de millions, augmentez simplement le montant. Cependant, n'utilisez pas rand() ou uuid() en grande quantité. , ce qui entraînera une dégradation des performances.
Contexte
Lorsque nous effectuons des tests de performances d'opérations de requête ou d'optimisation SQL, nous devons souvent créer une grande quantité de données de base dans l'environnement hors ligne pour nos tests. simuler le véritable environnement en ligne.
C'est absurde, vous ne pouvez pas me laisser tester en ligne, je serai piraté à mort par le DBA
Comment créer des données de test
1. 编写代码,通过代码批量插库(本人使用过,步骤太繁琐,性能不高,不推荐) 2. 编写存储过程和函数执行(本文实现方式1) 3. 临时数据表方式执行 (本文实现方式2,强烈推荐该方式,非常简单,数据插入快速,100W,只需几秒) 4. 一行一行手动插入,(WTF,去死吧)
Créer les bases de la structure de la table
Peu importe la méthode utilisée, la table que je souhaite insérer doit être créée
CREATE TABLE `t_user` ( `id` int(11) NOT NULL AUTO_INCREMENT, `c_user_id` varchar(36) NOT NULL DEFAULT '', `c_name` varchar(22) NOT NULL DEFAULT '', `c_province_id` int(11) NOT NULL, `c_city_id` int(11) NOT NULL, `create_time` datetime NOT NULL, PRIMARY KEY (`id`), KEY `idx_user_id` (`c_user_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
Méthode 1 : Utiliser des procédures stockées et des tables mémoire
Créer une table mémoire
利用 MySQL 内存表插入速度快的特点,我们先利用函数和存储过程在内存表中生成数据,然后再从内存表插入普通表中 CREATE TABLE `t_user_memory` ( `id` int(11) NOT NULL AUTO_INCREMENT, `c_user_id` varchar(36) NOT NULL DEFAULT '', `c_name` varchar(22) NOT NULL DEFAULT '', `c_province_id` int(11) NOT NULL, `c_city_id` int(11) NOT NULL, `create_time` datetime NOT NULL, PRIMARY KEY (`id`), KEY `idx_user_id` (`c_user_id`) ) ENGINE=MEMORY DEFAULT CHARSET=utf8mb4;
Créer des fonctions et des procédures stockées
# 创建随机字符串和随机时间的函数 mysql> delimiter $$ mysql> CREATE DEFINER=`root`@`%` FUNCTION `randStr`(n INT) RETURNS varchar(255) CHARSET utf8mb4 -> DETERMINISTIC -> BEGIN -> DECLARE chars_str varchar(100) DEFAULT 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'; -> DECLARE return_str varchar(255) DEFAULT '' ; -> DECLARE i INT DEFAULT 0; -> WHILE i SET return_str = concat(return_str, substring(chars_str, FLOOR(1 + RAND() * 62), 1)); -> SET i = i + 1; -> END WHILE; -> RETURN return_str; -> END$$ Query OK, 0 rows affected (0.00 sec) mysql> CREATE DEFINER=`root`@`%` FUNCTION `randDataTime`(sd DATETIME,ed DATETIME) RETURNS datetime -> DETERMINISTIC -> BEGIN -> DECLARE sub INT DEFAULT 0; -> DECLARE ret DATETIME; -> SET sub = ABS(UNIX_TIMESTAMP(ed)-UNIX_TIMESTAMP(sd)); -> SET ret = DATE_ADD(sd,INTERVAL FLOOR(1+RAND()*(sub-1)) SECOND); -> RETURN ret; -> END $$ mysql> delimiter ; # 创建插入数据存储过程 mysql> CREATE DEFINER=`root`@`%` PROCEDURE `add_t_user_memory`(IN n int) -> BEGIN -> DECLARE i INT DEFAULT 1; -> WHILE (i INSERT INTO t_user_memory (c_user_id, c_name, c_province_id,c_city_id, create_time) VALUES (uuid(), randStr(20), FLOOR(RAND() * 1000), FLOOR(RAND() * 100), NOW()); -> SET i = i + 1; -> END WHILE; -> END -> $$ Query OK, 0 rows affected (0.01 sec)
Appeler une procédure stockée
mysql> CALL add_t_user_memory(1000000); ERROR 1114 (HY000): The table 't_user_memory' is full 出现内存已满时,修改 max_heap_table_size 参数的大小,我使用64M内存,插入了22W数据,看情况改,不过这个值不要太大,默认32M或者64M就好,生产环境不要乱尝试
Insérer dans une table ordinaire à partir d'une table mémoire
mysql> INSERT INTO t_user SELECT * FROM t_user_memory; Query OK, 218953 rows affected (1.70 sec) Records: 218953 Duplicates: 0 Warnings: 0
Méthode 2 : Utilisez la table temporaire
pour créer une table de données temporaire tmp_table
mysql> INSERT INTO t_user SELECT * FROM t_user_memory; Query OK, 218953 rows affected (1.70 sec) Records: 218953 Duplicates: 0 Warnings: 0
Utilisez python ou bash pour générer un Fichier de données enregistrées de 100 w (Python sera généré en un instant)
python(推荐): python -c "for i in range(1, 1+1000000): print(i)" > base.txt
Importer les données dans la table temporaire tmp_table
mysql> load data infile '/Users/LJTjintao/temp/base.txt' replace into table tmp_table; Query OK, 1000000 rows affected (2.55 sec) Records: 1000000 Deleted: 0 Skipped: 0 Warnings: 0 千万级数据 20秒插入完成
Remarque : Une erreur peut être signalée lors de l'importation de données car mysql n'active pas secure_file_priv par défaut (Ce paramètre est utilisé pour limiter l'effet des opérations d'importation et d'exportation de données, telles que l'exécution de LOAD DATA, SELECT... Instruction INTO OUTFILE et fonctions LOAD_FILE(). Ces opérations nécessitent l'utilisateur avec l'autorisation FILE. )
Solution : Ajoutez secure_file_priv = /Users/LJTjintao/temp/` dans le fichier de configuration mysql ( my.ini ou my.conf), puis redémarrez mysql résout
en utilisant la table temporaire comme données de base, insertion de données dans t_user, l'insertion de données 100W prend 10,37 s
mysql> INSERT INTO t_user -> SELECT -> id, -> uuid(), -> CONCAT('userNickName', id), -> FLOOR(Rand() * 1000), -> FLOOR(Rand() * 100), -> NOW() -> FROM -> tmp_table; Query OK, 1000000 rows affected (10.37 sec) Records: 1000000 Duplicates: 0 Warnings: 0
Mettre à jour le champ d'heure de création pour rendre l'heure de création des données insérées plus aléatoire
UPDATE t_user SET create_time=date_add(create_time, interval FLOOR(1 + (RAND() * 7)) year); Query OK, 1000000 rows affected (5.21 sec) Rows matched: 1000000 Changed: 1000000 Warnings: 0 mysql> UPDATE t_user SET create_time=date_add(create_time, interval FLOOR(1 + (RAND() * 7)) year); Query OK, 1000000 rows affected (4.77 sec) Rows matched: 1000000 Changed: 1000000 Warnings: 0
mysql> select * from t_user limit 30; +----+--------------------------------------+----------------+---------------+-----------+---------------------+ | id | c_user_id | c_name | c_province_id | c_city_id | create_time | +----+--------------------------------------+----------------+---------------+-----------+---------------------+ | 1 | bf5e227a-7b84-11e9-9d6e-751d319e85c2 | userNickName1 | 84 | 64 | 2015-11-13 21:13:19 | | 2 | bf5e26f8-7b84-11e9-9d6e-751d319e85c2 | userNickName2 | 967 | 90 | 2019-11-13 20:19:33 | | 3 | bf5e2810-7b84-11e9-9d6e-751d319e85c2 | userNickName3 | 623 | 40 | 2014-11-13 20:57:46 | | 4 | bf5e2888-7b84-11e9-9d6e-751d319e85c2 | userNickName4 | 140 | 49 | 2016-11-13 20:50:11 | | 5 | bf5e28f6-7b84-11e9-9d6e-751d319e85c2 | userNickName5 | 47 | 75 | 2016-11-13 21:17:38 | | 6 | bf5e295a-7b84-11e9-9d6e-751d319e85c2 | userNickName6 | 642 | 94 | 2015-11-13 20:57:36 | | 7 | bf5e29be-7b84-11e9-9d6e-751d319e85c2 | userNickName7 | 780 | 7 | 2015-11-13 20:55:07 | | 8 | bf5e2a4a-7b84-11e9-9d6e-751d319e85c2 | userNickName8 | 39 | 96 | 2017-11-13 21:42:46 | | 9 | bf5e2b58-7b84-11e9-9d6e-751d319e85c2 | userNickName9 | 731 | 74 | 2015-11-13 22:48:30 | | 10 | bf5e2bb2-7b84-11e9-9d6e-751d319e85c2 | userNickName10 | 534 | 43 | 2016-11-13 22:54:10 | | 11 | bf5e2c16-7b84-11e9-9d6e-751d319e85c2 | userNickName11 | 572 | 55 | 2018-11-13 20:05:19 | | 12 | bf5e2c70-7b84-11e9-9d6e-751d319e85c2 | userNickName12 | 71 | 68 | 2014-11-13 20:44:04 | | 13 | bf5e2cca-7b84-11e9-9d6e-751d319e85c2 | userNickName13 | 204 | 97 | 2019-11-13 20:24:23 | | 14 | bf5e2d2e-7b84-11e9-9d6e-751d319e85c2 | userNickName14 | 249 | 32 | 2019-11-13 22:49:43 | | 15 | bf5e2d88-7b84-11e9-9d6e-751d319e85c2 | userNickName15 | 900 | 51 | 2019-11-13 20:55:26 | | 16 | bf5e2dec-7b84-11e9-9d6e-751d319e85c2 | userNickName16 | 854 | 74 | 2018-11-13 22:07:58 | | 17 | bf5e2e50-7b84-11e9-9d6e-751d319e85c2 | userNickName17 | 136 | 46 | 2013-11-13 21:53:34 | | 18 | bf5e2eb4-7b84-11e9-9d6e-751d319e85c2 | userNickName18 | 897 | 10 | 2018-11-13 20:03:55 | | 19 | bf5e2f0e-7b84-11e9-9d6e-751d319e85c2 | userNickName19 | 829 | 83 | 2013-11-13 20:38:54 | | 20 | bf5e2f68-7b84-11e9-9d6e-751d319e85c2 | userNickName20 | 683 | 91 | 2019-11-13 20:02:42 | | 21 | bf5e2fcc-7b84-11e9-9d6e-751d319e85c2 | userNickName21 | 511 | 81 | 2013-11-13 21:16:48 | | 22 | bf5e3026-7b84-11e9-9d6e-751d319e85c2 | userNickName22 | 562 | 35 | 2019-11-13 20:15:52 | | 23 | bf5e3080-7b84-11e9-9d6e-751d319e85c2 | userNickName23 | 91 | 39 | 2016-11-13 20:28:59 | | 24 | bf5e30da-7b84-11e9-9d6e-751d319e85c2 | userNickName24 | 677 | 21 | 2016-11-13 21:37:15 | | 25 | bf5e3134-7b84-11e9-9d6e-751d319e85c2 | userNickName25 | 50 | 60 | 2018-11-13 20:39:20 | | 26 | bf5e318e-7b84-11e9-9d6e-751d319e85c2 | userNickName26 | 856 | 47 | 2018-11-13 21:24:53 | | 27 | bf5e31e8-7b84-11e9-9d6e-751d319e85c2 | userNickName27 | 816 | 65 | 2014-11-13 22:06:26 | | 28 | bf5e324c-7b84-11e9-9d6e-751d319e85c2 | userNickName28 | 806 | 7 | 2019-11-13 20:17:30 | | 29 | bf5e32a6-7b84-11e9-9d6e-751d319e85c2 | userNickName29 | 973 | 63 | 2014-11-13 21:08:09 | | 30 | bf5e3300-7b84-11e9-9d6e-751d319e85c2 | userNickName30 | 237 | 29 | 2018-11-13 21:48:17 | +----+--------------------------------------+----------------+---------------+-----------+---------------------+ 30 rows in set (0.01 sec)
Plus de détails sur MySQL Pour les articles techniques, veuillez visiter la colonne Tutoriel MySQL pour apprendre !
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Les principales raisons pour lesquelles vous ne pouvez pas vous connecter à MySQL en tant que racines sont des problèmes d'autorisation, des erreurs de fichier de configuration, des problèmes de mot de passe incohérents, des problèmes de fichiers de socket ou une interception de pare-feu. La solution comprend: vérifiez si le paramètre Bind-Address dans le fichier de configuration est configuré correctement. Vérifiez si les autorisations de l'utilisateur racine ont été modifiées ou supprimées et réinitialisées. Vérifiez que le mot de passe est précis, y compris les cas et les caractères spéciaux. Vérifiez les paramètres et les chemins d'autorisation du fichier de socket. Vérifiez que le pare-feu bloque les connexions au serveur MySQL.

Lorsque MySQL modifie la structure du tableau, les verrous de métadonnées sont généralement utilisés, ce qui peut entraîner le verrouillage du tableau. Pour réduire l'impact des serrures, les mesures suivantes peuvent être prises: 1. Gardez les tables disponibles avec le DDL en ligne; 2. Effectuer des modifications complexes en lots; 3. Opérez pendant les périodes petites ou hors pointe; 4. Utilisez des outils PT-OSC pour obtenir un contrôle plus fin.

Simplification de l'intégration des données: AmazonrDSMysQL et l'intégration Zero ETL de Redshift, l'intégration des données est au cœur d'une organisation basée sur les données. Les processus traditionnels ETL (extrait, converti, charge) sont complexes et prennent du temps, en particulier lors de l'intégration de bases de données (telles que AmazonrDSMysQL) avec des entrepôts de données (tels que Redshift). Cependant, AWS fournit des solutions d'intégration ETL Zero qui ont complètement changé cette situation, fournissant une solution simplifiée et à temps proche pour la migration des données de RDSMySQL à Redshift. Cet article plongera dans l'intégration RDSMYSQL ZERO ETL avec Redshift, expliquant comment il fonctionne et les avantages qu'il apporte aux ingénieurs de données et aux développeurs.

1. Utilisez l'index correct pour accélérer la récupération des données en réduisant la quantité de données numérisées SELECT * FROMMLOYEESEESHWHERELAST_NAME = 'SMITH'; Si vous recherchez plusieurs fois une colonne d'une table, créez un index pour cette colonne. If you or your app needs data from multiple columns according to the criteria, create a composite index 2. Avoid select * only those required columns, if you select all unwanted columns, this will only consume more server memory and cause the server to slow down at high load or frequency times For example, your table contains columns such as created_at and updated_at and timestamps, and then avoid selecting * because they do not require inefficient query se

Dans la base de données MySQL, la relation entre l'utilisateur et la base de données est définie par les autorisations et les tables. L'utilisateur a un nom d'utilisateur et un mot de passe pour accéder à la base de données. Les autorisations sont accordées par la commande Grant, tandis que le tableau est créé par la commande Create Table. Pour établir une relation entre un utilisateur et une base de données, vous devez créer une base de données, créer un utilisateur, puis accorder des autorisations.

MySQL ne peut pas fonctionner directement sur Android, mais il peut être implémenté indirectement en utilisant les méthodes suivantes: à l'aide de la base de données légère SQLite, qui est construite sur le système Android, ne nécessite pas de serveur distinct et a une petite utilisation des ressources, qui est très adaptée aux applications de périphériques mobiles. Connectez-vous à distance au serveur MySQL et connectez-vous à la base de données MySQL sur le serveur distant via le réseau pour la lecture et l'écriture de données, mais il existe des inconvénients tels que des dépendances de réseau solides, des problèmes de sécurité et des coûts de serveur.

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.
