Python peut-il faire du calcul parallèle ?
Python peut effectuer des calculs parallèles. Ce qui suit est l'introduction pertinente :
<.> 1. Présentation
Parallel Python est un module python qui fournit un mécanisme d'exécution parallèle du code python sur SMP (systèmes avec plusieurs processeurs ou multicœurs) et clusters (ordinateurs connectés via un réseau ). Il est léger, facile à installer et à intégrer à d’autres logiciels Python. Parallel Python est un module open source et multiplateforme écrit en Python pur.2. Caractéristiques
Exécuter du code python en parallèle sur SMP et des clustersTechnologie de parallélisation basée sur les tâches facile à comprendre et à mettre en œuvre (facile à convertir des applications série en parallèle)Détecter automatiquement la configuration optimale (le nombre de processus de travail est défini par défaut sur le nombre effectif de processeurs) Allocation dynamique des processeurs (le nombre de processus de travail peut être modifié au moment de l'exécution) Faible surcharge pour les tâches suivantes avec la même fonctionnalité (implémentez une mise en cache transparente pour réduire la surcharge) Équilibrage de charge dynamique (les tâches sont réparties entre les processeurs au fur et à mesure de leur exécution) Tolérance aux pannes (en cas de défaillance du nœud , les tâches sont replanifiées sur d'autres nœuds) Découverte automatique des ressources informatiques Allocation dynamique des ressources informatiques (résultat de la découverte automatique et de la tolérance aux pannes) Connexion réseau SHA- authentification basée sur l'authentificationPortabilité et interopérabilité multiplateforme (Windows, Linux, Unix, Mac OS X)
Portabilité et interopérabilité multiplateforme (x86, x86 -64, etc.)
Open sourceRecommandations associées : "
Tutoriel vidéo Python"
Motivation
De nos jours, les logiciels sont écrits. en python est utilisé dans de nombreuses applications, notamment la logique métier, l'analyse de données et le calcul scientifique. Ceci, combiné à la large disponibilité d'ordinateurs SMP (multiprocesseurs ou multicœurs) et de clusters (ordinateurs connectés via un réseau) sur le marché, crée un besoin d'exécution parallèle du code python. La manière la plus simple et la plus courante d'écrire des applications parallèles pour les ordinateurs SMP consiste à utiliser des threads. Cependant, si l'application est liée informatiquement à l'aide de threads ou que le module python threadé ne permettra pas d'exécuter le bytecode python en parallèle. La raison en est que l'interpréteur Python utilise le GIL (Global Interpreter Lock) pour la comptabilité interne. Ce verrou permet d'exécuter une seule instruction de bytecode Python à la fois, même sur les machines SMP. Le module PP surmonte cette limitation et fournit un moyen simple d'écrire des applications Python parallèles. En interne, ppsmp utilise des processus et IPC (Inter-Process Communication) pour organiser des calculs parallèles. Tous les détails et complexités de cette dernière sont entièrement pris en charge, l'application soumet simplement le travail et récupère ses résultats (le moyen le plus simple d'écrire des applications parallèles). Pour rendre les choses encore meilleures, les logiciels écrits en PP fonctionnent en parallèle, même sur de nombreux ordinateurs connectés via un réseau local ou Internet. La portabilité multiplateforme et l'équilibrage de charge dynamique permettent à PP de paralléliser efficacement le calcul, même sur des clusters hétérogènes et multiplateformes.4. Installation
N'importe quelle plateforme : téléchargez l'archive du module et extrayez-la dans un répertoire local. Exécutez le script d'installation : python setup.py install Windows : Téléchargez et exécutez le binaire du programme d'installation de Windows.5. Exemple
import math, sys, time import pp def isprime(n): """Returns True if n is prime and False otherwise""" if not isinstance(n, int): raise TypeError("argument passed to is_prime is not of 'int' type") if n < 2: return False if n == 2: return True max = int(math.ceil(math.sqrt(n))) i = 2 while i <= max: if n % i == 0: return False i += 1 return True def sum_primes(n): """Calculates sum of all primes below given integer n""" return sum([x for x in xrange(2,n) if isprime(x)]) print """Usage: python sum_primes.py [ncpus] [ncpus] - the number of workers to run in parallel, if omitted it will be set to the number of processors in the system """ # tuple of all parallel python servers to connect with ppservers = () #ppservers = ("10.0.0.1",) if len(sys.argv) > 1: ncpus = int(sys.argv[1]) # Creates jobserver with ncpus workers job_server = pp.Server(ncpus, ppservers=ppservers) else: # Creates jobserver with automatically detected number of workers job_server = pp.Server(ppservers=ppservers) print "Starting pp with", job_server.get_ncpus(), "workers" # Submit a job of calulating sum_primes(100) for execution. # sum_primes - the function # (100,) - tuple with arguments for sum_primes # (isprime,) - tuple with functions on which function sum_primes depends # ("math",) - tuple with module names which must be imported before sum_primes execution # Execution starts as soon as one of the workers will become available job1 = job_server.submit(sum_primes, (100,), (isprime,), ("math",)) # Retrieves the result calculated by job1 # The value of job1() is the same as sum_primes(100) # If the job has not been finished yet, execution will wait here until result is available result = job1() print "Sum of primes below 100 is", result start_time = time.time() # The following submits 8 jobs and then retrieves the results inputs = (100000, 100100, 100200, 100300, 100400, 100500, 100600, 100700) jobs = [(input, job_server.submit(sum_primes,(input,), (isprime,), ("math",))) for input in inputs] for input, job in jobs: print "Sum of primes below", input, "is", job() print "Time elapsed: ", time.time() - start_time, "s" job_server.print_stats()
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.

VS Code est le code Visual Studio Nom complet, qui est un éditeur de code multiplateforme gratuit et open source et un environnement de développement développé par Microsoft. Il prend en charge un large éventail de langages de programmation et fournit une mise en surbrillance de syntaxe, une complétion automatique du code, des extraits de code et des invites intelligentes pour améliorer l'efficacité de développement. Grâce à un écosystème d'extension riche, les utilisateurs peuvent ajouter des extensions à des besoins et des langues spécifiques, tels que les débogueurs, les outils de mise en forme de code et les intégrations GIT. VS Code comprend également un débogueur intuitif qui aide à trouver et à résoudre rapidement les bogues dans votre code.
