Maison > base de données > SQL > Meilleures pratiques pour les index MongoDB

Meilleures pratiques pour les index MongoDB

步履不停
Libérer: 2019-06-24 17:36:15
original
3428 Les gens l'ont consulté

Meilleures pratiques pour les index MongoDB

Avant-propos

La plupart des développeurs savent que l'indexation est plus rapide. Mais dans le processus réel, nous rencontrons souvent des questions et des difficultés :

  • Les champs que nous interrogeons auront différents cas. Tous les champs impliqués dans la requête doivent-ils être indexés ?
  • Comment choisir entre un index composé et un champ unique ? Vaut-il mieux ajouter les deux ou un seul champ pour chacun ?
  • Y a-t-il des effets secondaires liés à l'ajout d'un index ?
  • L'index a été ajouté, mais il n'est toujours pas assez rapide ? ce qu'il faut faire?

Cet article tente d'expliquer les connaissances de base de l'indexation et de répondre aux questions ci-dessus.

1. Qu'est-ce qu'un indice exactement ?

La plupart des développeurs entrent en contact avec des index et savent probablement que les index sont similaires au catalogue de livres. Vous devez trouver le contenu souhaité, trouver les mots-clés qualifiés dans le catalogue, puis trouver le numéro de page du. chapitre correspondant, puis recherchez le contenu spécifique.
Dans la structure des données, l'implémentation d'index la plus simple est similaire à une hashmap, qui mappe vers un emplacement spécifique via le mot-clé pour trouver le contenu spécifique. Mais en plus du hachage, il existe de nombreuses façons de mettre en œuvre l'indexation.

(1) Plusieurs méthodes et fonctionnalités d'implémentation de l'index

hash / b-tree / b+-tree redis HSET / MongoDB&PostgreSQL / MySQL

hashmap

Meilleures pratiques pour les index MongoDB

Voir b-tree et b+-tree dans une seule image :

Meilleures pratiques pour les index MongoDB

    Les feuilles b+-tree stockent les données, les non-feuilles stockent les index, aucune donnée n'est stockée, il y a des liens entre les feuilles
  • Les non-feuilles b-tree peuvent stocker des données
En termes de complexité de recherche d'algorithme :

    le hachage est proche de O(1)
  • b-tree O(1)~ O(Log(n )) temps de recherche moyen plus rapide, temps de requête instable
  • b+ tree O(Log(n)) données continues, stabilité des requêtes
Quant à savoir pourquoi MongoDB choisit b-tree au lieu de b+ - pour son arbre d'implémentation ?

De nombreux articles sur Internet ont expliqué cela, mais ce n'est pas l'objet de cet article.

(2) Stockage des données et de l'index

L'index doit être stocké en mémoire autant que possible, les données en second. Meilleures pratiques pour les index MongoDBVeillez à ne conserver que les index nécessaires et à utiliser au maximum la mémoire.
Si la mémoire d'index est sur le point de remplir la mémoire, il sera facile de lire le disque et la vitesse ralentira.

(3) Les réflexions après avoir connu le principe de mise en œuvre et de stockage de l'index

insert/update/delete déclencheront l'arborescence de rééquilibrage, donc lorsque des données sont ajoutées, supprimées ou modifiées, l'index se déclenchera modification et il y aura une perte de performances, plus il y a d'index, mieux c'est. Dans ce cas, quels champs doivent être sélectionnés comme index ? Que dois-je faire lorsque la requête utilise ces conditions ?

Prenons l'exemple de la hashmap la plus simple, pourquoi la complexité n'est-elle pas O(1), mais soi-disant proche de O(1). Parce qu'il y a des conflits/duplications de clés, lorsque la base de données les recherche, s'il y a beaucoup de données avec des conflits de clés, elle doit quand même continuer à chercher à tour de rôle. Il en va de même pour b-tree en ce qui concerne la sélection des clés.
Une erreur que commettent souvent la plupart des développeurs est d'indexer des clés qui n'ont aucune distinction. Par exemple : de nombreuses collections n'ont que des catégories centralisées de documents de type/statut comptant des centaines de milliers ou plus. Généralement, ce type d'index n'est pas utile.

2. Index composé

(1) Plus il y a d'index composés, mieux c'est

Si vous ne souhaitez pas créer plus d'index redondants, les collègues de développement sélectionneront des index composés & champs uniques C'est parfois assez déroutant. Faisons quelques expériences basées sur des scénarios de rencontre typiques :

Une collection de prêts est créée ici. Simplifié pour n'avoir que 100 éléments de données. Cette table de prêt a _id, userId, status (statut du prêt), montant (montant

db.loans.count()100

db.loans.find({ "userId" : "59e022d33f239800129c61c7", "status" : "repayed", }).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "cashLoan.loans",
"indexFilterSet" : false,
"parsedQuery" : {
 "$and" : [
   {
     "status" : {
       "$eq" : "repayed"
     }
   },
   {
     "userId" : {
       "$eq" : "59e022d33f239800129c61c7"
     }
   }
 ]
},
"queryHash" : "15D5A9A1",
"planCacheKey" : "15D5A9A1",
"winningPlan" : {
 "stage" : "COLLSCAN",
 "filter" : {
   "$and" : [
     {
       "status" : {
         "$eq" : "repayed"
       }
     },
     {
       "userId" : {
         "$eq" : "59e022d33f239800129c61c7"
       }
     }
   ]
 },
 "direction" : "forward"
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "RMBAP",
"port" : 27017,
"version" : "4.1.11",
"gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94"
},
"ok" : 1
}
Copier après la connexion
Notez que la table COLLSCAN ci-dessus est numérisée car il n'y a pas d'index. Ensuite, nous créons respectivement plusieurs index.


étape 1 Créez d'abord {userId:1, status:1}

db.loans.createIndex({userId:1, status:1})
{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1
}
Copier après la connexion
rrree Résultat : {userId:1, status:1} est considéré comme le plan gagnant.

étape 2 : Créez un index utilisateur typique

db.loans.find({ "userId" : "59e022d33f239800129c61c7", "status" : "repayed", }).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "cashLoan.loans",
"indexFilterSet" : false,
"parsedQuery" : {
 "$and" : [
   {
     "status" : {
       "$eq" : "repayed"
     }
   },
   {
     "userId" : {
       "$eq" : "59e022d33f239800129c61c7"
     }
   }
 ]
},
"queryHash" : "15D5A9A1",
"planCacheKey" : "BB87F2BA",
"winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
   "stage" : "IXSCAN",
   "keyPattern" : {
     "userId" : 1,
     "status" : 1
   },
   "indexName" : "userId_1_status_1",
   "isMultiKey" : false,
   "multiKeyPaths" : {
     "userId" : [ ],
     "status" : [ ]
   },
   "isUnique" : false,
   "isSparse" : false,
   "isPartial" : false,
   "indexVersion" : 2,
   "direction" : "forward",
   "indexBounds" : {
     "userId" : [
       "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]"
     ],
     "status" : [
       "["repayed", "repayed"]"
     ]
   }
 }
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "RMBAP",
"port" : 27017,
"version" : "4.1.11",
"gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94"
},
"ok" : 1
}
Copier après la connexion
rrreeNotez que DB détecte {userId:1, status:1} comme une meilleure solution d'exécution.

db.loans.createIndex({userId:1})
{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 2,
"numIndexesAfter" : 3,
"ok" : 1
}
Copier après la connexion
Remarquez que DB détecte {userId:1} comme solution pour une meilleure exécution, hmm~, comme nous nous y attendions.

db.loans.find({ "userId" : "59e022d33f239800129c61c7", "status" : "repayed", }).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "cashLoan.loans",
"indexFilterSet" : false,
"parsedQuery" : {
 "$and" : [
   {
     "status" : {
       "$eq" : "repayed"
     }
   },
   {
     "userId" : {
       "$eq" : "59e022d33f239800129c61c7"
     }
   }
 ]
},
"queryHash" : "15D5A9A1",
"planCacheKey" : "1B1A4861",
"winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
   "stage" : "IXSCAN",
   "keyPattern" : {
     "userId" : 1,
     "status" : 1
   },
   "indexName" : "userId_1_status_1",
   "isMultiKey" : false,
   "multiKeyPaths" : {
     "userId" : [ ],
     "status" : [ ]
   },
   "isUnique" : false,
   "isSparse" : false,
   "isPartial" : false,
   "indexVersion" : 2,
   "direction" : "forward",
   "indexBounds" : {
     "userId" : [
       "[\"59e022d33f239800129c61c7\", \"59e022d33f239800129c61c7\"]"
     ],
     "status" : [
       "[\"repayed\", \"repayed\"]"
     ]
   }
 }
},
"rejectedPlans" : [
 {
   "stage" : "FETCH",
   "filter" : {
     "status" : {
       "$eq" : "repayed"
     }
   },
   "inputStage" : {
     "stage" : "IXSCAN",
     "keyPattern" : {
       "userId" : 1
     },
     "indexName" : "userId_1",
     "isMultiKey" : false,
     "multiKeyPaths" : {
       "userId" : [ ]
     },
     "isUnique" : false,
     "isSparse" : false,
     "isPartial" : false,
     "indexVersion" : 2,
     "direction" : "forward",
     "indexBounds" : {
       "userId" : [
         "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]"
       ]
     }
   }
 }
]
},
"serverInfo" : {
"host" : "RMBAP",
"port" : 27017,
"version" : "4.1.11",
"gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94"
},
"ok" : 1
}
Copier après la connexion

Partie intéressante : le statut n'atteint pas l'index, analyse complète de la tableL'étape suivante consiste à ajouter un tri :

db.loans.find({ "userId" : "59e022d33f239800129c61c7" }).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "cashLoan.loans",
"indexFilterSet" : false,
"parsedQuery" : {
 "userId" : {
   "$eq" : "59e022d33f239800129c61c7"
 }
},
"queryHash" : "B1777DBA",
"planCacheKey" : "1F09D68E",
"winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
   "stage" : "IXSCAN",
   "keyPattern" : {
     "userId" : 1
   },
   "indexName" : "userId_1",
   "isMultiKey" : false,
   "multiKeyPaths" : {
     "userId" : [ ]
   },
   "isUnique" : false,
   "isSparse" : false,
   "isPartial" : false,
   "indexVersion" : 2,
   "direction" : "forward",
   "indexBounds" : {
     "userId" : [
       "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]"
     ]
   }
 }
},
"rejectedPlans" : [
 {
   "stage" : "FETCH",
   "inputStage" : {
     "stage" : "IXSCAN",
     "keyPattern" : {
       "userId" : 1,
       "status" : 1
     },
     "indexName" : "userId_1_status_1",
     "isMultiKey" : false,
     "multiKeyPaths" : {
       "userId" : [ ],
       "status" : [ ]
     },
     "isUnique" : false,
     "isSparse" : false,
     "isPartial" : false,
     "indexVersion" : 2,
     "direction" : "forward",
     "indexBounds" : {
       "userId" : [
         "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]"
       ],
       "status" : [
         "[MinKey, MaxKey]"
       ]
     }
   }
 }
]
},
"serverInfo" : {
"host" : "RMBAP",
"port" : 27017,
"version" : "4.1.11",
"gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94"
},
"ok" : 1
}
Copier après la connexion
(2) Autres tentatives

Partie intéressante : le statut n'atteint pas l'index

db.loans.find({ "status" : "repayed" }).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "cashLoan.loans",
"indexFilterSet" : false,
"parsedQuery" : {
 "status" : {
   "$eq" : "repayed"
 }
},
"queryHash" : "E6304EB6",
"planCacheKey" : "7A94191B",
"winningPlan" : {
 "stage" : "COLLSCAN",
 "filter" : {
   "status" : {
     "$eq" : "repayed"
   }
 },
 "direction" : "forward"
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "RMBAP",
"port" : 27017,
"version" : "4.1.11",
"gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94"
},
"ok" : 1
}
Copier après la connexion
Copier après la connexion
L'index des hits n'a rien à voir avec l'ordre des champs dans la requête, comme nous l'avons deviné.


La partie intéressante revient, nous supprimons l'index {userId:1}

db.loans.find({ "userId" : "59e022d33f239800129c61c7" }).sort({status:1}).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "cashLoan.loans",
"indexFilterSet" : false,
"parsedQuery" : {
 "userId" : {
   "$eq" : "59e022d33f239800129c61c7"
 }
},
"queryHash" : "F5ABB1AA",
"planCacheKey" : "764CBAA8",
"winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
   "stage" : "IXSCAN",
   "keyPattern" : {
     "userId" : 1,
     "status" : 1
   },
   "indexName" : "userId_1_status_1",
   "isMultiKey" : false,
   "multiKeyPaths" : {
     "userId" : [ ],
     "status" : [ ]
   },
   "isUnique" : false,
   "isSparse" : false,
   "isPartial" : false,
   "indexVersion" : 2,
   "direction" : "forward",
   "indexBounds" : {
     "userId" : [
       "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]"
     ],
     "status" : [
       "[MinKey, MaxKey]"
     ]
   }
 }
},
"rejectedPlans" : [
 {
   "stage" : "SORT",
   "sortPattern" : {
     "status" : 1
   },
   "inputStage" : {
     "stage" : "SORT_KEY_GENERATOR",
     "inputStage" : {
       "stage" : "FETCH",
       "inputStage" : {
         "stage" : "IXSCAN",
         "keyPattern" : {
           "userId" : 1
         },
         "indexName" : "userId_1",
         "isMultiKey" : false,
         "multiKeyPaths" : {
           "userId" : [ ]
         },
         "isUnique" : false,
         "isSparse" : false,
         "isPartial" : false,
         "indexVersion" : 2,
         "direction" : "forward",
         "indexBounds" : {
           "userId" : [
             "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]"
           ]
         }
       }
     }
   }
 }
]
},
"serverInfo" : {
"host" : "RMBAP",
"port" : 27017,
"version" : "4.1.11",
"gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94"
},
"ok" : 1
}
Copier après la connexion
L'analyseur d'exécution de la base de données pense que l'index {userId:1, status:1} peut être meilleur , mais il n'y a pas d'index composite atteint, car le statut n'est pas le champ principal.

db.loans.find({ "status" : "repayed","userId" : "59e022d33f239800129c61c7", }).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "cashLoan.loans",
"indexFilterSet" : false,
"parsedQuery" : {
 "$and" : [
   {
     "status" : {
       "$eq" : "repayed"
     }
   },
   {
     "userId" : {
       "$eq" : "59e022d33f239800129c61c7"
     }
   }
 ]
},
"queryHash" : "15D5A9A1",
"planCacheKey" : "1B1A4861",
"winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
   "stage" : "IXSCAN",
   "keyPattern" : {
     "userId" : 1,
     "status" : 1
   },
   "indexName" : "userId_1_status_1",
   "isMultiKey" : false,
   "multiKeyPaths" : {
     "userId" : [ ],
     "status" : [ ]
   },
   "isUnique" : false,
   "isSparse" : false,
   "isPartial" : false,
   "indexVersion" : 2,
   "direction" : "forward",
   "indexBounds" : {
     "userId" : [
       "[\"59e022d33f239800129c61c7\", \"59e022d33f239800129c61c7\"]"
     ],
     "status" : [
       "[\"repayed\", \"repayed\"]"
     ]
   }
 }
},
"rejectedPlans" : [
 {
   "stage" : "FETCH",
   "filter" : {
     "status" : {
       "$eq" : "repayed"
     }
   },
   "inputStage" : {
     "stage" : "IXSCAN",
     "keyPattern" : {
       "userId" : 1
     },
     "indexName" : "userId_1",
     "isMultiKey" : false,
     "multiKeyPaths" : {
       "userId" : [ ]
     },
     "isUnique" : false,
     "isSparse" : false,
     "isPartial" : false,
     "indexVersion" : 2,
     "direction" : "forward",
     "indexBounds" : {
       "userId" : [
         "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]"
       ]
     }
   }
 }
]
},
"serverInfo" : {
"host" : "RMBAP",
"port" : 27017,
"version" : "4.1.11",
"gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94"
},
"ok" : 1
}
Copier après la connexion
Changez à nouveau l'angle de tri et échangez-le avec la requête et le tri précédents. Le précédent était :

db.loans.dropIndex({"userId":1})
{ "nIndexesWas" : 3, "ok" : 1 }

db.loans.find({"userId" : "59e022d33f239800129c61c7", }).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "cashLoan.loans",
"indexFilterSet" : false,
"parsedQuery" : {
 "userId" : {
   "$eq" : "59e022d33f239800129c61c7"
 }
},
"queryHash" : "B1777DBA",
"planCacheKey" : "5776AB9C",
"winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
   "stage" : "IXSCAN",
   "keyPattern" : {
     "userId" : 1,
     "status" : 1
   },
   "indexName" : "userId_1_status_1",
   "isMultiKey" : false,
   "multiKeyPaths" : {
     "userId" : [ ],
     "status" : [ ]
   },
   "isUnique" : false,
   "isSparse" : false,
   "isPartial" : false,
   "indexVersion" : 2,
   "direction" : "forward",
   "indexBounds" : {
     "userId" : [
       "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]"
     ],
     "status" : [
       "[MinKey, MaxKey]"
     ]
   }
 }
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "RMBAP",
"port" : 27017,
"version" : "4.1.11",
"gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94"
},
"ok" : 1
}
Copier après la connexion
Vous voyez quelle est la différence ?

db.loans.find({ "status" : "repayed" }).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "cashLoan.loans",
"indexFilterSet" : false,
"parsedQuery" : {
 "status" : {
   "$eq" : "repayed"
 }
},
"queryHash" : "E6304EB6",
"planCacheKey" : "7A94191B",
"winningPlan" : {
 "stage" : "COLLSCAN",
 "filter" : {
   "status" : {
     "$eq" : "repayed"
   }
 },
 "direction" : "forward"
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "RMBAP",
"port" : 27017,
"version" : "4.1.11",
"gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94"
},
"ok" : 1
}
Copier après la connexion
Copier après la connexion
Comme je l'ai deviné, appuyez sur l'index.

Jouons à nouveau et confirmons le test principal déposé :

db.loans.dropIndex("userId_1_status_1")
{ "nIndexesWas" : 2, "ok" : 1 }
Copier après la connexion
db.loans.getIndexes()
[
{
"v" : 2,
"key" : {
 "id" : 1
},
"name" : "id_",
"ns" : "cashLoan.loans"
}
]
Copier après la connexion
db.loans.createIndex({status:1, userId:1})
{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1
}
Copier après la connexion
db.loans.getIndexes()
[
{
"v" : 2,
"key" : {
 "id" : 1
},
"name" : "id_",
"ns" : "cashLoan.loans"
},
{
"v" : 2,
"key" : {
 "status" : 1,
 "userId" : 1
},
"name" : "status_1_userId_1",
"ns" : "cashLoan.loans"
}
]
Copier après la connexion
Copier après la connexion
db.loans.find({ "status" : "repayed" }).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "cashLoan.loans",
"indexFilterSet" : false,
"parsedQuery" : {
 "status" : {
   "$eq" : "repayed"
 }
},
"queryHash" : "E6304EB6",
"planCacheKey" : "7A94191B",
"winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
   "stage" : "IXSCAN",
   "keyPattern" : {
     "status" : 1,
     "userId" : 1
   },
   "indexName" : "status_1_userId_1",
   "isMultiKey" : false,
   "multiKeyPaths" : {
     "status" : [ ],
     "userId" : [ ]
   },
   "isUnique" : false,
   "isSparse" : false,
   "isPartial" : false,
   "indexVersion" : 2,
   "direction" : "forward",
   "indexBounds" : {
     "status" : [
       "["repayed", "repayed"]"
     ],
     "userId" : [
       "[MinKey, MaxKey]"
     ]
   }
 }
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "RMBAP",
"port" : 27017,
"version" : "4.1.11",
"gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94"
},
"ok" : 1
}
Copier après la connexion
db.loans.getIndexes()
[
{
"v" : 2,
"key" : {
 "id" : 1
},
"name" : "id_",
"ns" : "cashLoan.loans"
},
{
"v" : 2,
"key" : {
 "status" : 1,
 "userId" : 1
},
"name" : "status_1_userId_1",
"ns" : "cashLoan.loans"
}
]
Copier après la connexion
Copier après la connexion
db.loans.find({"userId" : "59e022d33f239800129c61c7", }).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "cashLoan.loans",
"indexFilterSet" : false,
"parsedQuery" : {
 "userId" : {
   "$eq" : "59e022d33f239800129c61c7"
 }
},
"queryHash" : "B1777DBA",
"planCacheKey" : "5776AB9C",
"winningPlan" : {
 "stage" : "COLLSCAN",
 "filter" : {
   "userId" : {
     "$eq" : "59e022d33f239800129c61c7"
   }
 },
 "direction" : "forward"
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "RMBAP",
"port" : 27017,
"version" : "4.1.11",
"gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94"
},
"ok" : 1
}
Copier après la connexion

看完这个试验,明白了 {userId:1, status:1} vs {status:1,userId:1} 的差别了吗?

PS:这个case 里面其实status 区分度不高,这里只是作为实例展示。

三、总结:

  • 注意使用上、使用频率上、区分高的/常用的在前面;
  • 如果需要减少索引以节省memory/提高修改数据的性能的话,可以保留区分度高,常用的,去除区分度不高,不常用的索引。
  • 学会用explain()验证分析性能:

DB 一般都有执行器优化的分析,MySQL & MongoDB 都是 用explain 来做分析。
语法上MySQL :

explain your_sql

MongoDB:

yoursql.explain()

总结典型:理想的查询是结合explain 的指标,他们通常是多个的混合:

  • IXSCAN  : 索引命中;
  • Limit  : 带limit;
  • Projection :  相当于非 select * ;
  • Docs Size less is better  ;
  • Docs Examined less is better ;
  • nReturned=totalDocsExamined=totalKeysExamined ;
  • SORT in index :sort 也是命中索引,否则,需要拿到数据后,再执行一遍排序;
  • Limit Array elements : 限定数组返回的条数,数组也不应该太多数据,否则schema 设计不合理。

彩蛋

文末,还有最开头1个问题没回答:如果我的索引改加的都加了,还不够快,怎么办?
留个悬念,之后再写一篇。

更多PHP相关技术文章,请访问PHP教程栏目进行学习!

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal