Meilleures pratiques pour les index MongoDB
Avant-propos
La plupart des développeurs savent que l'indexation est plus rapide. Mais dans le processus réel, nous rencontrons souvent des questions et des difficultés :
- Les champs que nous interrogeons auront différents cas. Tous les champs impliqués dans la requête doivent-ils être indexés ?
- Comment choisir entre un index composé et un champ unique ? Vaut-il mieux ajouter les deux ou un seul champ pour chacun ?
- Y a-t-il des effets secondaires liés à l'ajout d'un index ?
- L'index a été ajouté, mais il n'est toujours pas assez rapide ? ce qu'il faut faire?
Cet article tente d'expliquer les connaissances de base de l'indexation et de répondre aux questions ci-dessus.
1. Qu'est-ce qu'un indice exactement ?
La plupart des développeurs entrent en contact avec des index et savent probablement que les index sont similaires au catalogue de livres. Vous devez trouver le contenu souhaité, trouver les mots-clés qualifiés dans le catalogue, puis trouver le numéro de page du. chapitre correspondant, puis recherchez le contenu spécifique.
Dans la structure des données, l'implémentation d'index la plus simple est similaire à une hashmap, qui mappe vers un emplacement spécifique via le mot-clé pour trouver le contenu spécifique. Mais en plus du hachage, il existe de nombreuses façons de mettre en œuvre l'indexation.
(1) Plusieurs méthodes et fonctionnalités d'implémentation de l'index
hash / b-tree / b+-tree redis HSET / MongoDB&PostgreSQL / MySQL
hashmap
Voir b-tree et b+-tree dans une seule image :
- Les feuilles b+-tree stockent les données, les non-feuilles stockent les index, aucune donnée n'est stockée, il y a des liens entre les feuilles
- Les non-feuilles b-tree peuvent stocker des données
- le hachage est proche de O(1)
- b-tree O(1)~ O(Log(n )) temps de recherche moyen plus rapide, temps de requête instable
- b+ tree O(Log(n)) données continues, stabilité des requêtes
De nombreux articles sur Internet ont expliqué cela, mais ce n'est pas l'objet de cet article.
L'index doit être stocké en mémoire autant que possible, les données en second. Veillez à ne conserver que les index nécessaires et à utiliser au maximum la mémoire.
Si la mémoire d'index est sur le point de remplir la mémoire, il sera facile de lire le disque et la vitesse ralentira.
Prenons l'exemple de la hashmap la plus simple, pourquoi la complexité n'est-elle pas O(1), mais soi-disant proche de O(1). Parce qu'il y a des conflits/duplications de clés, lorsque la base de données les recherche, s'il y a beaucoup de données avec des conflits de clés, elle doit quand même continuer à chercher à tour de rôle. Il en va de même pour b-tree en ce qui concerne la sélection des clés.
Une erreur que commettent souvent la plupart des développeurs est d'indexer des clés qui n'ont aucune distinction. Par exemple : de nombreuses collections n'ont que des catégories centralisées de documents de type/statut comptant des centaines de milliers ou plus. Généralement, ce type d'index n'est pas utile.
Une collection de prêts est créée ici. Simplifié pour n'avoir que 100 éléments de données. Cette table de prêt a _id, userId, status (statut du prêt), montant (montant
db.loans.count()100
db.loans.find({ "userId" : "59e022d33f239800129c61c7", "status" : "repayed", }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "queryHash" : "15D5A9A1", "planCacheKey" : "15D5A9A1", "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
étape 1 Créez d'abord {userId:1, status:1}
db.loans.createIndex({userId:1, status:1}) { "createdCollectionAutomatically" : false, "numIndexesBefore" : 1, "numIndexesAfter" : 2, "ok" : 1 }
étape 2 : Créez un index utilisateur typique
db.loans.find({ "userId" : "59e022d33f239800129c61c7", "status" : "repayed", }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "queryHash" : "15D5A9A1", "planCacheKey" : "BB87F2BA", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "["repayed", "repayed"]" ] } } }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
db.loans.createIndex({userId:1}) { "createdCollectionAutomatically" : false, "numIndexesBefore" : 2, "numIndexesAfter" : 3, "ok" : 1 }
db.loans.find({ "userId" : "59e022d33f239800129c61c7", "status" : "repayed", }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "queryHash" : "15D5A9A1", "planCacheKey" : "1B1A4861", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "[\"59e022d33f239800129c61c7\", \"59e022d33f239800129c61c7\"]" ], "status" : [ "[\"repayed\", \"repayed\"]" ] } } }, "rejectedPlans" : [ { "stage" : "FETCH", "filter" : { "status" : { "$eq" : "repayed" } }, "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1 }, "indexName" : "userId_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ] } } } ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
Partie intéressante : le statut n'atteint pas l'index, analyse complète de la tableL'étape suivante consiste à ajouter un tri :
db.loans.find({ "userId" : "59e022d33f239800129c61c7" }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "queryHash" : "B1777DBA", "planCacheKey" : "1F09D68E", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1 }, "indexName" : "userId_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ] } } }, "rejectedPlans" : [ { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "[MinKey, MaxKey]" ] } } } ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
Partie intéressante : le statut n'atteint pas l'index
db.loans.find({ "status" : "repayed" }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "status" : { "$eq" : "repayed" } }, "queryHash" : "E6304EB6", "planCacheKey" : "7A94191B", "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "status" : { "$eq" : "repayed" } }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
La partie intéressante revient, nous supprimons l'index {userId:1}
db.loans.find({ "userId" : "59e022d33f239800129c61c7" }).sort({status:1}).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "queryHash" : "F5ABB1AA", "planCacheKey" : "764CBAA8", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "[MinKey, MaxKey]" ] } } }, "rejectedPlans" : [ { "stage" : "SORT", "sortPattern" : { "status" : 1 }, "inputStage" : { "stage" : "SORT_KEY_GENERATOR", "inputStage" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1 }, "indexName" : "userId_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ] } } } } } ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
db.loans.find({ "status" : "repayed","userId" : "59e022d33f239800129c61c7", }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "queryHash" : "15D5A9A1", "planCacheKey" : "1B1A4861", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "[\"59e022d33f239800129c61c7\", \"59e022d33f239800129c61c7\"]" ], "status" : [ "[\"repayed\", \"repayed\"]" ] } } }, "rejectedPlans" : [ { "stage" : "FETCH", "filter" : { "status" : { "$eq" : "repayed" } }, "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1 }, "indexName" : "userId_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ] } } } ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
db.loans.dropIndex({"userId":1}) { "nIndexesWas" : 3, "ok" : 1 } db.loans.find({"userId" : "59e022d33f239800129c61c7", }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "queryHash" : "B1777DBA", "planCacheKey" : "5776AB9C", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "[MinKey, MaxKey]" ] } } }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
db.loans.find({ "status" : "repayed" }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "status" : { "$eq" : "repayed" } }, "queryHash" : "E6304EB6", "planCacheKey" : "7A94191B", "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "status" : { "$eq" : "repayed" } }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
Jouons à nouveau et confirmons le test principal déposé :
db.loans.dropIndex("userId_1_status_1") { "nIndexesWas" : 2, "ok" : 1 }
db.loans.getIndexes() [ { "v" : 2, "key" : { "id" : 1 }, "name" : "id_", "ns" : "cashLoan.loans" } ]
db.loans.createIndex({status:1, userId:1}) { "createdCollectionAutomatically" : false, "numIndexesBefore" : 1, "numIndexesAfter" : 2, "ok" : 1 }
db.loans.getIndexes() [ { "v" : 2, "key" : { "id" : 1 }, "name" : "id_", "ns" : "cashLoan.loans" }, { "v" : 2, "key" : { "status" : 1, "userId" : 1 }, "name" : "status_1_userId_1", "ns" : "cashLoan.loans" } ]
db.loans.find({ "status" : "repayed" }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "status" : { "$eq" : "repayed" } }, "queryHash" : "E6304EB6", "planCacheKey" : "7A94191B", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "status" : 1, "userId" : 1 }, "indexName" : "status_1_userId_1", "isMultiKey" : false, "multiKeyPaths" : { "status" : [ ], "userId" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "status" : [ "["repayed", "repayed"]" ], "userId" : [ "[MinKey, MaxKey]" ] } } }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
db.loans.getIndexes() [ { "v" : 2, "key" : { "id" : 1 }, "name" : "id_", "ns" : "cashLoan.loans" }, { "v" : 2, "key" : { "status" : 1, "userId" : 1 }, "name" : "status_1_userId_1", "ns" : "cashLoan.loans" } ]
db.loans.find({"userId" : "59e022d33f239800129c61c7", }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "queryHash" : "B1777DBA", "planCacheKey" : "5776AB9C", "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
看完这个试验,明白了 {userId:1, status:1} vs {status:1,userId:1} 的差别了吗?
PS:这个case 里面其实status 区分度不高,这里只是作为实例展示。
三、总结:
- 注意使用上、使用频率上、区分高的/常用的在前面;
- 如果需要减少索引以节省memory/提高修改数据的性能的话,可以保留区分度高,常用的,去除区分度不高,不常用的索引。
- 学会用explain()验证分析性能:
DB 一般都有执行器优化的分析,MySQL & MongoDB 都是 用explain 来做分析。
语法上MySQL :
explain your_sql
MongoDB:
yoursql.explain()
总结典型:理想的查询是结合explain 的指标,他们通常是多个的混合:
- IXSCAN : 索引命中;
- Limit : 带limit;
- Projection : 相当于非 select * ;
- Docs Size less is better ;
- Docs Examined less is better ;
- nReturned=totalDocsExamined=totalKeysExamined ;
- SORT in index :sort 也是命中索引,否则,需要拿到数据后,再执行一遍排序;
- Limit Array elements : 限定数组返回的条数,数组也不应该太多数据,否则schema 设计不合理。
彩蛋
文末,还有最开头1个问题没回答:如果我的索引改加的都加了,还不够快,怎么办?
留个悬念,之后再写一篇。
更多PHP相关技术文章,请访问PHP教程栏目进行学习!
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Les solutions pour résoudre les problèmes d'expiration de Navicat incluent : renouveler la licence ; désinstaller et réinstaller ; désactiver les mises à jour automatiques ; utiliser la version gratuite de Navicat Premium ; contacter le support client de Navicat.

Pour les développeurs front-end, la difficulté d'apprendre Node.js dépend de leur base JavaScript, de leur expérience en programmation côté serveur, de leur familiarité avec la ligne de commande et de leur style d'apprentissage. La courbe d'apprentissage comprend des modules d'entrée de gamme et de niveau avancé axés sur les concepts fondamentaux, l'architecture côté serveur, l'intégration de bases de données et la programmation asynchrone. Dans l'ensemble, apprendre Node.js n'est pas difficile pour les développeurs qui ont une base solide en JavaScript et sont prêts à investir du temps et des efforts, mais pour ceux qui manquent d'expérience pertinente, il peut y avoir certains défis à surmonter.

Pour vous connecter à MongoDB à l'aide de Navicat, vous devez : Installer Navicat Créer une connexion MongoDB : a. Entrez le nom de connexion, l'adresse de l'hôte et le port b. Entrez les informations d'authentification (si nécessaire) Ajoutez un certificat SSL (si nécessaire) Vérifiez la connexion. Enregistrez la connexion

Les modules les plus couramment utilisés dans Node.js incluent : Module de système de fichiers pour les opérations sur les fichiers. Module réseau pour la communication réseau. Module de flux pour le traitement des flux de données. Module de base de données pour interagir avec les bases de données. D'autres modules utilitaires tels que le chiffrement, les chaînes de requête, l'analyse de chaînes et le framework HTTP.

.NET 4.0 est utilisé pour créer une variété d'applications et offre aux développeurs d'applications des fonctionnalités riches, notamment : programmation orientée objet, flexibilité, architecture puissante, intégration du cloud computing, optimisation des performances, bibliothèques étendues, sécurité, évolutivité, accès aux données et mobile. soutien au développement.

Pour les applications Node.js, le choix d'une base de données dépend des exigences de l'application. Les bases de données NoSQL MongoDB offrent de la flexibilité, Redis offre une simultanéité élevée, Cassandra gère les données de séries chronologiques et Elasticsearch est dédié à la recherche. La base de données SQL MySQL offre d'excellentes performances, PostgreSQL est riche en fonctionnalités, SQLite est léger et Oracle Database est complet. Lors du choix, tenez compte des types de données, des requêtes, des performances, du caractère transactionnel, de la disponibilité, des licences et du coût.

Étapes pour se connecter à une base de données dans Node.js : Installez le package MySQL, MongoDB ou PostgreSQL. Créez un objet de connexion à la base de données. Ouvrez une connexion à une base de données et gérez les erreurs de connexion.

Se connecter à une base de données dans Node.js nécessite de choisir un système de base de données (relationnelle ou non relationnelle) puis d'établir une connexion à l'aide de modules spécifiques à ce type. Les modules courants incluent mysql (MySQL), pg (PostgreSQL), mongodb (MongoDB) et redis (Redis). Une fois la connexion établie, vous pouvez utiliser des instructions de requête pour récupérer des données et des instructions de mise à jour pour modifier les données. Enfin, la connexion doit être fermée lorsque toutes les opérations sont terminées pour libérer les ressources. Améliorez les performances et la sécurité en suivant ces bonnes pratiques, telles que l'utilisation du regroupement de connexions, les requêtes paramétrées et la gestion gracieuse des erreurs.
