Contexte du problème : il y a un lot de fichiers qui doivent être traités. Pour chaque fichier, la même fonction doit être appelée pour le traitement, ce qui prend beaucoup de temps.
Y a-t-il un moyen d'accélérer les choses ? Bien sûr, si vous divisez ces fichiers en plusieurs lots, chaque lot appelle un script Python écrit par vous pour le traitement, de sorte que l'exécution de plusieurs programmes Python en même temps puisse également être accélérée.
Existe-t-il un moyen plus simple ? Par exemple, un programme que j'exécute est divisé en plusieurs threads en même temps puis traité ?
Idée générale : divisez ces listes de chemins de fichiers en plusieurs parties. Quant au nombre de parties à diviser, cela dépend du nombre de cœurs de votre CPU. Par exemple, si votre CPU a 32 cœurs, cela peut théoriquement. être accéléré de 32 fois.
Le code est le suivant :
# -*-coding:utf-8-*- import numpy as np from glob import glob import math import os import torch from tqdm import tqdm import multiprocessing label_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/label.txt' file_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/distortion_image' save_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/flow_field' r_d_max = 128 image_index = 0 txt_file = open(label_path) file_list = txt_file.readlines() txt_file.close() file_label = {} for i in file_list: i = i.split() file_label[i[0]] = i[1] r_d_max = 128 eps = 1e-32 H = 256 W = 256 def generate_flow_field(image_list): for image_file_path in ((image_list)): pixel_flow = np.zeros(shape=tuple([256, 256, 2])) # 按照pytorch中的grid来写 image_file_name = os.path.basename(image_file_path) # print(image_file_name) k = float(file_label[image_file_name])*(-1)*1e-7 # print(k) r_u_max = r_d_max/(1+k*r_d_max**2) # 计算出畸变校正之后的对角线的理论长度 scale = r_u_max/128 # 将这个长度压缩到256的尺寸,会有一个scale,实际上这里写128*sqrt(2)可能会更加直观 for i_u in range(256): for j_u in range(256): x_u = float(i_u - 128) y_u = float(128 - j_u) theta = math.atan2(y_u, x_u) r = math.sqrt(x_u ** 2 + y_u ** 2) r = r * scale # 实际上得到的r,即没有resize到256×256的图像尺寸size,并且带入公式中 r_d = (1.0 - math.sqrt(1 - 4.0 * k * r ** 2)) / (2 * k * r + eps) # 对应在原图(畸变图)中的r x_d = int(round(r_d * math.cos(theta))) y_d = int(round(r_d * math.sin(theta))) i_d = int(x_d + W / 2.0) j_d = int(H / 2.0 - y_d) if i_d < W and i_d >= 0 and j_d < H and j_d >= 0: # 只有求的的畸变点在原图中的时候才进行赋值 value1 = (i_d - 128.0)/128.0 value2 = (j_d - 128.0)/128.0 pixel_flow[j_u, i_u, 0] = value1 # mesh中存储的是对应的r的比值,在进行畸变校正的时候,给定一张这样的图,进行找像素即可 pixel_flow[j_u, i_u, 1] = value2 # 保存成array格式 saved_image_file_path = os.path.join(save_path, image_file_name.split('.')[0] + '.npy') pixel_flow = pixel_flow.astype('f2') # 将数据的格式转换成float16类型, 节省空间 # print(saved_image_file_path) # print(pixel_flow) np.save(saved_image_file_path, pixel_flow) return if __name__ == '__main__': file_list = glob(file_path + '/*.JPEG') m = 32 n = int(math.ceil(len(file_list) / float(m))) # 向上取整 result = [] pool = multiprocessing.Pool(processes=m) # 32进程 for i in range(0, len(file_list), n): result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],))) pool.close() pool.join()
Dans le code ci-dessus, la fonction
generate_flow_field(image_list)
doit passer dans un liste, puis pour Utiliser cette liste, puis enregistrez les résultats de l'opération
Ainsi, il vous suffit de diviser les multiples fichiers que vous devez traiter en listes de la même taille que possible, puis d'ouvrir un thread pour chaque liste. Traitez-le simplement
La fonction principale ci-dessus :
if __name__ == '__main__': file_list = glob(file_path + '/*.JPEG') # 将文件夹下所有的JPEG文件列成一个list m = 32 # 假设CPU有32个核心 n = int(math.ceil(len(file_list) / float(m))) # 每一个核心需要处理的list的数目 result = [] pool = multiprocessing.Pool(processes=m) # 开32线程的线程池 for i in range(0, len(file_list), n): result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],))) # 对每一个list都用上面我们定义的函数进行处理 pool.close() # 处理结束之后,关闭线程池 pool.join()
Principalement deux lignes de code comme celle-ci, une ligne est
pool = multiprocessing.Pool(processes=m) # 开32线程的线程池
utilisée pour ouvrir le fil de discussion. pool
De plus, une ligne est
result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],))) # 对每一个list都用上面我们定义的函数进行处理
Pour le pool de threads, utilisez apply_async() pour exécuter la fonction generate_flow_field en même temps. Les paramètres transmis sont : file_list[i: i+. n]
En fait, la fonction apply_async() La fonction est que tous les threads s'exécutent en même temps et la vitesse est relativement rapide.
Pour plus d'articles techniques liés à Python, veuillez visiter la colonne Tutoriel Python pour apprendre !
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!