La complexité temporelle de l'algorithme est
La complexité temporelle d'un algorithme fait référence au nombre d'opérations de base requises lors de l'exécution de l'algorithme.
Un algorithme est un ensemble de règles bien définies utilisées pour résoudre un problème en un nombre limité d'étapes. (Apprentissage recommandé : Tutoriel vidéo MySQL)
En termes simples, il s'agit du processus de résolution de problèmes informatiques. La complexité d'un algorithme est une mesure de l'efficacité de l'algorithme, de la quantité de ressources informatiques requises pour exécuter l'algorithme et une base importante pour évaluer la qualité de l'algorithme. Nous pouvons évaluer la qualité d’un algorithme en fonction de sa complexité temporelle et spatiale.
Lorsqu'un algorithme est converti en programme et exécuté sur un ordinateur, le temps nécessaire à son exécution dépend des facteurs suivants :
(1) La vitesse du matériel.
(2) Langage pour écrire des programmes. Plus le niveau du langage d’implémentation est élevé, moins son exécution est efficace.
(3) La qualité du code objet généré par le compilateur. Les compilateurs avec une meilleure optimisation du code produiront des programmes de meilleure qualité.
(4) Ampleur du problème. Par exemple, le temps d'exécution pour trouver des nombres premiers inférieurs à 100 et trouver des nombres premiers inférieurs à 1000 doit être différent.
Évidemment, il est difficile de comparer le temps d'exécution des algorithmes lorsque divers facteurs sont incertains. Autrement dit, il n’est pas approprié de mesurer l’efficacité d’un algorithme en utilisant le temps absolu nécessaire à son exécution. Par conséquent, la complexité temporelle ne peut pas être déterminée par le temps d'exécution ou la longueur du programme d'algorithme, mais doit être mesurée par le nombre d'opérations de base requises lors de l'exécution de l'algorithme. Fréquence de temps Le temps nécessaire à un algorithme est proportionnel au nombre d'exécutions d'instructions dans l'algorithme. Quel que soit l'algorithme qui a le plus d'instructions exécutées, cela prend plus de temps. Le nombre d’exécutions d’instructions dans un algorithme est appelé fréquence temporelle. Notons-le comme T(n).
Complexité temporelleDans la fréquence temporelle que nous venons de mentionner, n est appelé l'ampleur du problème. Lorsque n continue de changer, la fréquence temporelle T(n) continuera également de changer. Mais parfois, nous voulons savoir quel modèle cela montre lorsqu’il change. Pour cela, nous introduisons la notion de complexité temporelle. Généralement, le nombre d'exécutions répétées d'opérations de base dans un algorithme est fonction de la taille du problème n, représentée par T(n) S'il existe une fonction auxiliaire f(n), telle que lorsque n. approches A l'infini, la valeur limite de T(n)/f(n) est une constante non égale à zéro, alors f(n) est dit fonction du même ordre de grandeur que T(n). Notée T(n)=O(f(n)), O(f(n)) est appelée la complexité temporelle asymptotique de l'algorithme, ou complexité temporelle en abrégé.
Pour plus d'articles techniques liés à MySQL, veuillez visiter la colonne
Tutoriel MySQLCe qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Écrit ci-dessus et compréhension personnelle de l'auteur : À l'heure actuelle, dans l'ensemble du système de conduite autonome, le module de perception joue un rôle essentiel. Le véhicule autonome roulant sur la route ne peut obtenir des résultats de perception précis que via le module de perception en aval. dans le système de conduite autonome, prend des jugements et des décisions comportementales opportuns et corrects. Actuellement, les voitures dotées de fonctions de conduite autonome sont généralement équipées d'une variété de capteurs d'informations de données, notamment des capteurs de caméra à vision panoramique, des capteurs lidar et des capteurs radar à ondes millimétriques pour collecter des informations selon différentes modalités afin d'accomplir des tâches de perception précises. L'algorithme de perception BEV basé sur la vision pure est privilégié par l'industrie en raison de son faible coût matériel et de sa facilité de déploiement, et ses résultats peuvent être facilement appliqués à diverses tâches en aval.

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

La couche inférieure de la fonction de tri C++ utilise le tri par fusion, sa complexité est O(nlogn) et propose différents choix d'algorithmes de tri, notamment le tri rapide, le tri par tas et le tri stable.

La convergence de l’intelligence artificielle (IA) et des forces de l’ordre ouvre de nouvelles possibilités en matière de prévention et de détection de la criminalité. Les capacités prédictives de l’intelligence artificielle sont largement utilisées dans des systèmes tels que CrimeGPT (Crime Prediction Technology) pour prédire les activités criminelles. Cet article explore le potentiel de l’intelligence artificielle dans la prédiction de la criminalité, ses applications actuelles, les défis auxquels elle est confrontée et les éventuelles implications éthiques de cette technologie. Intelligence artificielle et prédiction de la criminalité : les bases CrimeGPT utilise des algorithmes d'apprentissage automatique pour analyser de grands ensembles de données, identifiant des modèles qui peuvent prédire où et quand les crimes sont susceptibles de se produire. Ces ensembles de données comprennent des statistiques historiques sur la criminalité, des informations démographiques, des indicateurs économiques, des tendances météorologiques, etc. En identifiant les tendances qui pourraient échapper aux analystes humains, l'intelligence artificielle peut donner du pouvoir aux forces de l'ordre.

1. Le développement historique des grands modèles multimodaux. La photo ci-dessus est le premier atelier sur l'intelligence artificielle organisé au Dartmouth College aux États-Unis en 1956. Cette conférence est également considérée comme le coup d'envoi du développement de l'intelligence artificielle. pionniers de la logique symbolique (à l'exception du neurobiologiste Peter Milner au milieu du premier rang). Cependant, cette théorie de la logique symbolique n’a pas pu être réalisée avant longtemps et a même marqué le début du premier hiver de l’IA dans les années 1980 et 1990. Il a fallu attendre la récente mise en œuvre de grands modèles de langage pour découvrir que les réseaux de neurones portent réellement cette pensée logique. Les travaux du neurobiologiste Peter Milner ont inspiré le développement ultérieur des réseaux de neurones artificiels, et c'est pour cette raison qu'il a été invité à y participer. dans ce projet.

01Aperçu des perspectives Actuellement, il est difficile d'atteindre un équilibre approprié entre efficacité de détection et résultats de détection. Nous avons développé un algorithme YOLOv5 amélioré pour la détection de cibles dans des images de télédétection optique haute résolution, en utilisant des pyramides de caractéristiques multicouches, des stratégies de têtes de détection multiples et des modules d'attention hybrides pour améliorer l'effet du réseau de détection de cibles dans les images de télédétection optique. Selon l'ensemble de données SIMD, le mAP du nouvel algorithme est 2,2 % meilleur que YOLOv5 et 8,48 % meilleur que YOLOX, permettant ainsi d'obtenir un meilleur équilibre entre les résultats de détection et la vitesse. 02 Contexte et motivation Avec le développement rapide de la technologie de télédétection, les images de télédétection optique à haute résolution ont été utilisées pour décrire de nombreux objets à la surface de la Terre, notamment des avions, des voitures, des bâtiments, etc. Détection d'objets dans l'interprétation d'images de télédétection

1. Contexte de la construction de la plateforme 58 Portraits Tout d'abord, je voudrais partager avec vous le contexte de la construction de la plateforme 58 Portraits. 1. La pensée traditionnelle de la plate-forme de profilage traditionnelle ne suffit plus. La création d'une plate-forme de profilage des utilisateurs s'appuie sur des capacités de modélisation d'entrepôt de données pour intégrer les données de plusieurs secteurs d'activité afin de créer des portraits d'utilisateurs précis. Elle nécessite également l'exploration de données pour comprendre le comportement et les intérêts des utilisateurs. et besoins, et fournir des capacités côté algorithmes ; enfin, il doit également disposer de capacités de plate-forme de données pour stocker, interroger et partager efficacement les données de profil utilisateur et fournir des services de profil. La principale différence entre une plate-forme de profilage d'entreprise auto-construite et une plate-forme de profilage de middle-office est que la plate-forme de profilage auto-construite dessert un seul secteur d'activité et peut être personnalisée à la demande. La plate-forme de mid-office dessert plusieurs secteurs d'activité et est complexe ; modélisation et offre des fonctionnalités plus générales. 2.58 Portraits d'utilisateurs de l'arrière-plan de la construction du portrait sur la plate-forme médiane 58

Analyse d'algorithme PHP : Une méthode efficace pour trouver les nombres manquants dans un tableau. Dans le processus de développement d'applications PHP, nous rencontrons souvent des situations où nous devons trouver des nombres manquants dans un tableau. Cette situation est très courante dans le traitement des données et la conception d'algorithmes, nous devons donc maîtriser des algorithmes de recherche efficaces pour résoudre ce problème. Cet article présentera une méthode efficace pour trouver les nombres manquants dans un tableau et joindra des exemples de code PHP spécifiques. Description du problème Supposons que nous ayons un tableau contenant des nombres entiers compris entre 1 et 100, mais qu'il manque un nombre. Nous devons concevoir un