Maison développement back-end Tutoriel Python Explication détaillée du fonctionnement des tableaux par la bibliothèque Python Numpy

Explication détaillée du fonctionnement des tableaux par la bibliothèque Python Numpy

Aug 30, 2019 pm 05:29 PM
numpy库 python 数组

Explication détaillée du fonctionnement des tableaux par la bibliothèque Python Numpy

1. Introduction

NumPy (Numerical Python) est une bibliothèque d'extensions du langage Python qui prend en charge un grand nombre d'opérations matricielles et de tableaux dimensionnels, en plus de fournir un grand nombre de bibliothèques de fonctions mathématiques pour les opérations sur les tableaux. La structure de données principale est le tableau ndarray.

NumPy est souvent utilisé avec SciPy (Scientific Python) et Matplotlib (bibliothèque de traçage), une combinaison largement utilisée en remplacement de MatLab.

SciPy est une bibliothèque d'algorithmes Python open source et une boîte à outils mathématiques. SciPy contient des modules d'optimisation, d'algèbre linéaire, d'intégration, d'interpolation, de fonctions spéciales, de transformation de Fourier rapide, de traitement du signal et de traitement d'image, de résolution d'équations différentielles ordinaires et d'autres calculs couramment utilisés en science et en ingénierie.

Matplotlib est une interface visuelle pour le langage de programmation Python et son package d'extension de mathématiques numériques NumPy.

2. Créer

Créer un tableau unidimensionnel

(1) Créer directement : np.array([1, 2, 3, 4, 5, 6])

(2) Créez une constante à partir de la liste de python : np.array(list([1, 2, 3, 4, 5, 6]))

Données unidimensionnelles de valeur

(1) Créer une valeur constante avec 0 : np.zeros(n,dytpe=float/int)

(2) Créer une valeur constante avec 1 Valeur : np.ones(n)

(3) Créez un tableau vide : np.empty(4)

Créez un tableau avec des éléments croissants

( 1) Tableau incrémentiel à partir de 0 : np.arange(8)

(2) Intervalle donné, taille de pas personnalisée : np.arange(0,1,0.2)

(3 ) Étant donné un intervalle, personnalisez le nombre : np.linspace(-1,1,50)

Créez un tableau multidimensionnel : créez un tableau unidimensionnel et ajoutez-le au tableau multidimensionnel

# 数组的结构一定是np.array([]) 无论数组中间存放的是多少“层”数据
# 二维数组相当于存放的是“两层”数组而已
arr1=np.array(list([1, 2, 3, 4, 5]))
arr2=np.array([arr1,[1,0,0,1,0]])               # 2*5的两维数组
arr3=np.array(list([[0,0,1,1,1],[1,1,1,0,0],[2,3,4,5,6]]))    # 3*5的两维数组
arrx=np.array([arr1,list([1, 2, 3, 4, 5],[1,1,1,0,0])])     # 报错
arry=np.array([list([[ 1,2,3,  7, 11],[2,3,4,5,6]]),[1, 2, 3, 4, 5]]) # 报错
Copier après la connexion

Recommandations associées : "Tutoriel vidéo Python"

Créer des données dimensionnelles (n*m) avec des valeurs constantes

(1) Créer un valeur constante de 0 : np.zeros((n*m),dytpe=float/int)

(2) Créez une valeur constante avec 1 : np.ones((n*m))

(3)Créez un tableau vide : np.empty((n*m))

Créez un tableau de nombres aléatoires

Générez une graine de nombres aléatoires :

(1) np.random.seed()

(2) np.random.RandomState()

Générer des nombres aléatoires :

Explication détaillée du fonctionnement des tableaux par la bibliothèque Python Numpy

Générer avec un tableau aléatoire avec une distribution régulière

(1) Distribution binomiale : np.random.binomial(n, p, size)

(2) Distribution normale : np. random.normal(loc, scale, size)

Convertir le fichier csv en tableau ou tableau

Utiliser le np.genfromtxt('csv file name', delimiter = 'delimiter dans le fichier') fonction Convertir le fichier en tableau

 csv_array = np.genfromtxt('sample.csv', delimiter=',')
 print(csv_array)
Copier après la connexion

3. Transformation du tableau

Générer la fonction de transposition tableau/matrice, c'est-à-dire la fonction échange de numéros de lignes et de colonnes, utilisez .T

a = np.array([[32, 15, 6, 9, 14], 
              [12, 10, 5, 23, 1],
              [2, 16, 13, 40, 37]])
print(a.T)
-------------------
# 结果如下
[[32 12  2]
 [15 10 16]
 [ 6  5 13]
 [ 9 23 40]
 [14  1 37]]
Copier après la connexion

Changez la forme du tableau :

(1) arr.resize(n,m) : Le arr.resize(n,m ) la fonction modifie le tableau en place, nécessitant : le nombre d'éléments doit être cohérent

a=np.arange(8)
a.resize(2,4)
print(a)
---------------------------
[[0 1 2 3]
 [4 5 6 7]]
Copier après la connexion

(2) arr.reshape(n,m) : Si le paramètre d'une certaine dimension est -1, cela signifie que le nombre total d'éléments sera calculé en fonction de l'autre dimension.

a=np.arange(8).reshape(-1,1)
print(a)
-----------------
[[0]
 [1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [7]]
Copier après la connexion

sera un. La dimension est augmentée à deux dimensions : np.newaxis

np.newaxis signifie en fait augmenter directement la dimension. . Nous n'ajoutons généralement pas trop de dimensions au tableau. Voici un exemple d'augmentation d'une dimension à deux dimensions :

(1) Augmenter la dimension de la ligne : arr[np.newaxis, :]

(2) Augmenter la dimension de la colonne : arr[: , np.newaxis]

a=np.arange(8)
a             # array([0, 1, 2, 3, 4, 5, 6, 7])
a.shape           # (8,)
a[np.newaxis, :]      # array([[0, 1, 2, 3, 4, 5, 6, 7]])
a.shape           # (8,)
a[: , np.newaxis]     # array([[0],[1],[2],[3],[4],[5],[6],[7]])
a.shape           # (8,)
Copier après la connexion

Réduire la dimensionnalité : arr.ravel()

Lorsque la fonction arr.ravel() réduit les dimensions : la valeur par défaut est de générer un nouveau tableau dans l'ordre des lignes (c'est-à-dire lire ligne par ligne) ; si le paramètre "F" est transmis, l'ordre des colonnes est réduit.

a=np.array([[1,2],[3,4]])
a.ravel()       
a.ravel('F')      
----------------------------
# 结果 array([1, 2, 3, 4])
# 结果 array([1, 3, 2, 4])
Copier après la connexion

<. 🎜>4. Calcul

Effectuer des opérations de calcul sur le tableau

(1) Ajouter et soustraire des éléments

a=np.arange(8).reshape(2,4)       # array([[0, 1, 2, 3], [4, 5, 6, 7]])
b=np.random.randint(8,size=(2,4))   # array([[1, 2, 5, 3], [4, 1, 0, 6]])
a+b
a-b
----------------------------
# a+b和a-b结果分别是:
array([[ 1,  3,  7,  6],
       [ 8,  6,  6, 13]])
array([[-1, -1, -3,  0],
       [ 0,  4,  6,  1]])
Copier après la connexion

(2) Multiplication : mettre au carré/multiplier des éléments dans matrice

a=np.arange(8).reshape(2,4)       # array([[0, 1, 2, 3], [4, 5, 6, 7]])
b=np.random.randint(8,size=(2,4))   # array([[1, 2, 5, 3], [4, 1, 0, 6]])
a**2
a*b
-----------------------
# a矩阵平方/a*b矩阵中元素相乘结果分别:
array([[ 0,  1,  4,  9],
       [16, 25, 36, 49]])
array([[ 0,  2, 10,  9],
       [16,  5,  0, 42]])
Copier après la connexion

(3) Matrice*matrice :

# 要求a矩阵的行要等于b矩阵的列数;且a矩阵的列等于b矩阵的行数
a=np.arange(8).reshape(2,4)       # array([[0, 1, 2, 3], [4, 5, 6, 7]])
b=np.random.randint(8,size=(4,2))   # array([[3, 0],[3, 3],[5, 6],[6, 7]])
c1 = np.dot(a,b)
c2 = a.dot(b)
----------------------
# ab矩阵相乘的结果:c1=c2 
array([[ 31,  36],
     [ 99, 100]])
Copier après la connexion

(4) Calcul logique

[Note] La liste ne peut pas être utilisée dans son ensemble pour porter des jugements logiques sur le des éléments individuels dedans !

# 结果返回:一个数组,其中每个元素根据逻辑判断的布尔类型的结果
a > 3 
-----------------------------
# 结果如下:
array([[False, False, False, False],
     [ True,  True,  True,  True]])
Copier après la connexion

5. Récupérer la valeur

pour obtenir un élément dans un tableau unidimensionnel : l'opération est la même que l'index de la liste

a = np.array([5, 2, 7, 0, 11])
a[0]      # 结果为 5
a[:4]     # 结果为 从头开始到索引为4结束
a[2:]     # 结果为 从索引为2的开始到结尾
a[::2]      # 结果为 从头开始到结尾,每2个取一个值
Copier après la connexion

pour obtenir un tableau multidimensionnel Un certain élément, une certaine valeur de ligne ou de colonne

a = np.array([[32, 15, 6, 9, 14], 
         [12, 10, 5, 23, 1],
         [2, 16, 13, 40, 37]])
a[2,1]     # 结果是一个元素 16
a[2][1]    # 结果是一个元素 16
a[1]      # 第2行 array([12, 10,  5, 23,  1])
a[:,2]   # 取出全部行,第2列 [15,10,16]
a[1:3, :]   # 取出[1,3)行,全部列
a[1,1:]    # array([10,  5, 23,  1])
Copier après la connexion

obtient le

# 需要注意的是,我们数据进行逻辑计算操作得到的仍然是一个数组
# 如果我们想要的是一个过滤后的数组,就需要将"逻辑判断"传入数组中
a = np.array([[32, 15, 6, 9, 14], 
              [12, 10, 5, 23, 1],
              [2, 16, 13, 40, 37]])
a[a > 3]
a[(a > 3) | (a < 2)]  
------------------------------
# 结果分别是:
array([32, 15,  6,  9, 14, 12, 10,  5, 23, 16, 13, 40, 37])
array([32, 15,  6,  9, 14, 12, 10,  5, 23,  1, 16, 13, 40, 37])
Copier après la connexion

qui satisfait l'opération logique Traversal : le résultat est sorti ligne par. rangée

a = np.array([[32, 15, 6, 9, 14], 
         [12, 10, 5, 23, 1],
         [2, 16, 13, 40, 37]])
for x in a:
    print(x)
--------------------
[32 15  6  9 14]
[12 10  5 23  1]
[ 2 16 13 40 37]
Copier après la connexion

6. Copier/ Fractionner/Fusionner

Copier : arr.cope()

Fractionner :

(1 ) Divisé également : np.split(arr, n, axis=0 /1) (C'est-à-dire uniquement lorsque le nombre de lignes ou de colonnes peut être divisé par n)

(2) Division inégale : np. array_split(arr, n) La valeur par défaut est divisée en n parties par ligne

a = np.array([[32, 15, 6, 9, 14, 21], 
         [12, 10, 5, 23, 1, 10],
         [2, 16, 13, 40, 37, 8]])
              
# 可以看到a矩阵是(3*6),所以使用np.split()只能尝试行分成3份;或者列分成2/3/6份 
np.split(a,3,axis=0)  
np.split(a,3,axis=1)
np.array_split(a,2)
np.array_split(a,4,axis=1)
-------------------------------------------
[array([[32, 15,  6,  9, 14, 21]]),
 array([[12, 10,  5, 23,  1, 10]]),
 array([[ 2, 16, 13, 40, 37,  8]])]
   
[array([[32, 15],
        [12, 10],
        [ 2, 16]]), array([[ 6,  9],
        [ 5, 23],
        [13, 40]]), array([[14, 21],
        [ 1, 10],
        [37,  8]])]
        
[array([[32, 15,  6,  9, 14, 21],
        [12, 10,  5, 23,  1, 10]]), array([[ 2, 16, 13, 40, 37,  8]])]
        
[array([[32, 15],
        [12, 10],
        [ 2, 16]]), array([[ 6,  9],
        [ 5, 23],
        [13, 40]]), array([[14],
        [ 1],
        [37]]), array([[21],
        [10],
        [ 8]])]
Copier après la connexion


Fusion : np.concatenate((arr1, arr2, arr3), axis=0/1) Par défaut, il est connecté en dessous des données

a=np.random.rand(2,3)
b=np.random.randint(1,size=(2,3))
np.concatenate((a,b,a))         # 接在下面
np.concatenate((a,b,a),axis=1)      # 接在后面
------------------------
array([[0.95912866, 0.81396527, 0.809493  ],
       [0.4539276 , 0.24173315, 0.63931439],
       [0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        ],
       [0.95912866, 0.81396527, 0.809493  ],
       [0.4539276 , 0.24173315, 0.63931439]])
array([[0.95912866, 0.81396527, 0.809493  , 0.        , 0.        ,
        0.        , 0.95912866, 0.81396527, 0.809493  ],
       [0.4539276 , 0.24173315, 0.63931439, 0.        , 0.        ,
        0.        , 0.4539276 , 0.24173315, 0.63931439]])
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: différents paradigmes expliqués PHP et Python: différents paradigmes expliqués Apr 18, 2025 am 12:26 AM

PHP est principalement la programmation procédurale, mais prend également en charge la programmation orientée objet (POO); Python prend en charge une variété de paradigmes, y compris la POO, la programmation fonctionnelle et procédurale. PHP convient au développement Web, et Python convient à une variété d'applications telles que l'analyse des données et l'apprentissage automatique.

Choisir entre PHP et Python: un guide Choisir entre PHP et Python: un guide Apr 18, 2025 am 12:24 AM

PHP convient au développement Web et au prototypage rapide, et Python convient à la science des données et à l'apprentissage automatique. 1.Php est utilisé pour le développement Web dynamique, avec une syntaxe simple et adapté pour un développement rapide. 2. Python a une syntaxe concise, convient à plusieurs champs et a un écosystème de bibliothèque solide.

Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Apr 16, 2025 am 12:12 AM

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.

Comment exécuter des programmes dans Terminal Vscode Comment exécuter des programmes dans Terminal Vscode Apr 15, 2025 pm 06:42 PM

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

Peut-on exécuter le code sous Windows 8 Peut-on exécuter le code sous Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code peut fonctionner sur Windows 8, mais l'expérience peut ne pas être excellente. Assurez-vous d'abord que le système a été mis à jour sur le dernier correctif, puis téléchargez le package d'installation VS Code qui correspond à l'architecture du système et l'installez comme invité. Après l'installation, sachez que certaines extensions peuvent être incompatibles avec Windows 8 et doivent rechercher des extensions alternatives ou utiliser de nouveaux systèmes Windows dans une machine virtuelle. Installez les extensions nécessaires pour vérifier si elles fonctionnent correctement. Bien que le code VS soit possible sur Windows 8, il est recommandé de passer à un système Windows plus récent pour une meilleure expérience de développement et une meilleure sécurité.

PHP et Python: une plongée profonde dans leur histoire PHP et Python: une plongée profonde dans leur histoire Apr 18, 2025 am 12:25 AM

PHP est originaire en 1994 et a été développé par Rasmuslerdorf. Il a été utilisé à l'origine pour suivre les visiteurs du site Web et a progressivement évolué en un langage de script côté serveur et a été largement utilisé dans le développement Web. Python a été développé par Guidovan Rossum à la fin des années 1980 et a été publié pour la première fois en 1991. Il met l'accent sur la lisibilité et la simplicité du code, et convient à l'informatique scientifique, à l'analyse des données et à d'autres domaines.

L'extension VScode est-elle malveillante? L'extension VScode est-elle malveillante? Apr 15, 2025 pm 07:57 PM

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

Le code Visual Studio peut-il être utilisé dans Python Le code Visual Studio peut-il être utilisé dans Python Apr 15, 2025 pm 08:18 PM

VS Code peut être utilisé pour écrire Python et fournit de nombreuses fonctionnalités qui en font un outil idéal pour développer des applications Python. Il permet aux utilisateurs de: installer des extensions Python pour obtenir des fonctions telles que la réalisation du code, la mise en évidence de la syntaxe et le débogage. Utilisez le débogueur pour suivre le code étape par étape, trouver et corriger les erreurs. Intégrez Git pour le contrôle de version. Utilisez des outils de mise en forme de code pour maintenir la cohérence du code. Utilisez l'outil de liaison pour repérer les problèmes potentiels à l'avance.

See all articles