Maison Problème commun Algorithme de réseau neuronal BP

Algorithme de réseau neuronal BP

Oct 24, 2019 pm 02:10 PM
神经网络

Le réseau BP (Back Propagation) a été proposé en 1986 par un groupe de scientifiques dirigé par Rumelhart et McCelland. Il s'agit d'un réseau à action directe multicouche formé selon l'algorithme de rétro-propagation des erreurs. modèle de réseau neuronal utilisé.

Algorithme de réseau neuronal BP

Le réseau BP peut apprendre et stocker un grand nombre de relations de cartographie de modèles d'entrée-sortie sans révéler à l'avance les équations mathématiques décrivant cette relation de cartographie.

Sa règle d'apprentissage est d'utiliser la méthode de descente la plus raide et d'ajuster en continu les poids et les seuils du réseau par rétropropagation pour minimiser la somme des erreurs carrées du réseau. La structure topologique du modèle de réseau neuronal BP comprend la couche d'entrée, la couche cachée et la couche de sortie. (Apprentissage recommandé : Tutoriel vidéo Web front-end)

L'algorithme de réseau neuronal BP est proposé sur la base de l'algorithme existant du réseau neuronal BP, par sélection arbitraire Avec un ensemble de poids, le résultat cible donné est directement utilisé comme somme algébrique d'équations linéaires pour établir un système d'équations linéaires. La solution nécessite une pondération. Il n'y a pas de problèmes de convergence lente et minimale locale des méthodes traditionnelles, et c'est plus facile. comprendre.

Algorithme BP

Système de réseaux de neurones artificiels (ANN) apparu après les années 1940. Il est réglable par de nombreux neurones. Il est connecté par des poids de connexion et présente les caractéristiques des grands. traitement parallèle à grande échelle, stockage d'informations distribué et bonnes capacités d'auto-organisation et d'auto-apprentissage. Il est de plus en plus largement utilisé dans les domaines du traitement de l'information, de la reconnaissance de formes, du contrôle intelligent et de la modélisation de systèmes.

En particulier, la formation de rétro-propagation des erreurs (réseau BP) peut se rapprocher de n'importe quelle fonction continue et possède de fortes capacités de cartographie non linéaire, ainsi que le nombre de couches intermédiaires du réseau et les unités de traitement de chaque couche. Paramètres tels que le nombre et le coefficient d'apprentissage du réseau peuvent être définis en fonction de la situation spécifique, et la flexibilité est grande, il joue donc un rôle important dans de nombreux domaines d'application.

Afin de résoudre les défauts du réseau neuronal BP tels que la vitesse de convergence lente, l'incapacité de garantir la convergence vers le point maximum global, le manque de conseils théoriques dans la sélection de la couche intermédiaire du réseau et du nombre de ses unités , et l'instabilité de l'apprentissage du réseau et de la mémoire, cette méthode a été proposée par de nombreux algorithmes améliorés.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

YOLO est immortel ! YOLOv9 est sorti : performances et vitesse SOTA~ YOLO est immortel ! YOLOv9 est sorti : performances et vitesse SOTA~ Feb 26, 2024 am 11:31 AM

Les méthodes d'apprentissage profond d'aujourd'hui se concentrent sur la conception de la fonction objectif la plus appropriée afin que les résultats de prédiction du modèle soient les plus proches de la situation réelle. Dans le même temps, une architecture adaptée doit être conçue pour obtenir suffisamment d’informations pour la prédiction. Les méthodes existantes ignorent le fait que lorsque les données d’entrée subissent une extraction de caractéristiques couche par couche et une transformation spatiale, une grande quantité d’informations sera perdue. Cet article abordera des problèmes importants lors de la transmission de données via des réseaux profonds, à savoir les goulots d'étranglement de l'information et les fonctions réversibles. Sur cette base, le concept d'information de gradient programmable (PGI) est proposé pour faire face aux différents changements requis par les réseaux profonds pour atteindre des objectifs multiples. PGI peut fournir des informations d'entrée complètes pour la tâche cible afin de calculer la fonction objectif, obtenant ainsi des informations de gradient fiables pour mettre à jour les pondérations du réseau. De plus, un nouveau cadre de réseau léger est conçu

La fondation, la frontière et l'application du GNN La fondation, la frontière et l'application du GNN Apr 11, 2023 pm 11:40 PM

Les réseaux de neurones graphiques (GNN) ont réalisé des progrès rapides et incroyables ces dernières années. Le réseau neuronal graphique, également connu sous le nom d'apprentissage profond graphique, d'apprentissage de représentation graphique (apprentissage de représentation graphique) ou d'apprentissage profond géométrique, est le sujet de recherche qui connaît la croissance la plus rapide dans le domaine de l'apprentissage automatique, en particulier de l'apprentissage profond. Le titre de ce partage est « Bases, frontières et applications du GNN ». Il présente principalement le contenu général du livre complet « Bases, frontières et applications des réseaux de neurones graphiques » compilé par les chercheurs Wu Lingfei, Cui Peng, Pei Jian et Zhao. Liang. 1. Introduction aux réseaux de neurones graphiques 1. Pourquoi étudier les graphiques ? Les graphiques sont un langage universel pour décrire et modéliser des systèmes complexes. Le graphe en lui-même n’est pas complexe, il se compose principalement d’arêtes et de nœuds. Nous pouvons utiliser des nœuds pour représenter n'importe quel objet que nous voulons modéliser et des arêtes pour représenter deux

Un aperçu des trois architectures de puces traditionnelles pour la conduite autonome dans un seul article Un aperçu des trois architectures de puces traditionnelles pour la conduite autonome dans un seul article Apr 12, 2023 pm 12:07 PM

Les puces IA actuelles sont principalement divisées en trois catégories : GPU, FPGA et ASIC. Les GPU et les FPGA sont des architectures de puces relativement matures à un stade précoce et sont des puces à usage général. ASIC est une puce personnalisée pour des scénarios d'IA spécifiques. L’industrie a confirmé que les processeurs ne sont pas adaptés au calcul de l’IA, mais qu’ils sont également essentiels dans les applications d’IA. Comparaison de l'architecture de la solution GPU entre le GPU et le CPU Le CPU suit l'architecture von Neumann, dont le cœur est le stockage des programmes/données et l'exécution séquentielle en série. Par conséquent, l'architecture du CPU nécessite une grande quantité d'espace pour placer l'unité de stockage (Cache) et l'unité de contrôle (Control). En revanche, l'unité de calcul (ALU) n'occupe qu'une petite partie, le CPU est donc performant à grande échelle. calcul parallèle.

'Le propriétaire de Bilibili UP a créé avec succès le premier réseau neuronal au monde basé sur la pierre rouge, qui a fait sensation sur les réseaux sociaux et a été salué par Yann LeCun.' 'Le propriétaire de Bilibili UP a créé avec succès le premier réseau neuronal au monde basé sur la pierre rouge, qui a fait sensation sur les réseaux sociaux et a été salué par Yann LeCun.' May 07, 2023 pm 10:58 PM

Dans Minecraft, la redstone est un élément très important. C'est un matériau unique dans le jeu. Les interrupteurs, les torches de redstone et les blocs de redstone peuvent fournir une énergie semblable à l'électricité aux fils ou aux objets. Les circuits Redstone peuvent être utilisés pour construire des structures permettant de contrôler ou d'activer d'autres machines. Ils peuvent eux-mêmes être conçus pour répondre à une activation manuelle par les joueurs, ou ils peuvent émettre des signaux à plusieurs reprises ou répondre à des changements provoqués par des non-joueurs, tels que le mouvement des créatures. et des objets. Chute, croissance des plantes, jour et nuit, et plus encore. Par conséquent, dans mon monde, Redstone peut contrôler de nombreux types de machines, allant des machines simples telles que les portes automatiques, les interrupteurs d'éclairage et les alimentations stroboscopiques, aux énormes ascenseurs, aux fermes automatiques, aux petites plates-formes de jeu et même aux machines intégrées aux jeux. Récemment, la station B UP principale @

Multi-chemin, multi-domaine, tout compris ! Google AI publie le modèle général d'apprentissage multi-domaines MDL Multi-chemin, multi-domaine, tout compris ! Google AI publie le modèle général d'apprentissage multi-domaines MDL May 28, 2023 pm 02:12 PM

Les modèles d'apprentissage profond pour les tâches de vision (telles que la classification d'images) sont généralement formés de bout en bout avec des données provenant d'un seul domaine visuel (telles que des images naturelles ou des images générées par ordinateur). Généralement, une application qui effectue des tâches de vision pour plusieurs domaines doit créer plusieurs modèles pour chaque domaine distinct et les former indépendamment. Les données ne sont pas partagées entre différents domaines. Lors de l'inférence, chaque modèle gérera un domaine spécifique. Même s'ils sont orientés vers des domaines différents, certaines caractéristiques des premières couches entre ces modèles sont similaires, de sorte que la formation conjointe de ces modèles est plus efficace. Cela réduit la latence et la consommation d'énergie, ainsi que le coût de la mémoire lié au stockage de chaque paramètre du modèle. Cette approche est appelée apprentissage multidomaine (MDL). De plus, les modèles MDL peuvent également surpasser les modèles simples.

Un drone capable de résister aux vents violents ? Caltech utilise 12 minutes de données de vol pour apprendre aux drones à voler dans le vent Un drone capable de résister aux vents violents ? Caltech utilise 12 minutes de données de vol pour apprendre aux drones à voler dans le vent Apr 09, 2023 pm 11:51 PM

Lorsque le vent est suffisamment fort pour souffler sur le parapluie, le drone est stable, comme ceci : voler dans le vent fait partie du vol dans les airs. À un niveau élevé, lorsque le pilote fait atterrir l'avion, la vitesse du vent peut être élevée. Ce qui leur pose des défis ; à un niveau moindre, les rafales de vent peuvent également affecter le vol des drones. Actuellement, les drones volent dans des conditions contrôlées, sans vent, ou sont pilotés par des humains à l’aide de télécommandes. Les drones sont contrôlés par les chercheurs pour voler en formations à ciel ouvert, mais ces vols sont généralement effectués dans des conditions et des environnements idéaux. Cependant, pour que les drones puissent effectuer de manière autonome des tâches nécessaires mais routinières, comme la livraison de colis, ils doivent être capables de s'adapter aux conditions de vent en temps réel. Pour rendre les drones plus maniables lorsqu'ils volent face au vent, une équipe d'ingénieurs de Caltech

1,3 ms prend 1,3 ms ! La dernière architecture de réseau neuronal mobile open source de Tsinghua, RepViT 1,3 ms prend 1,3 ms ! La dernière architecture de réseau neuronal mobile open source de Tsinghua, RepViT Mar 11, 2024 pm 12:07 PM

Adresse papier : https://arxiv.org/abs/2307.09283 Adresse code : https://github.com/THU-MIG/RepViTRepViT fonctionne bien dans l'architecture ViT mobile et présente des avantages significatifs. Ensuite, nous explorons les contributions de cette étude. Il est mentionné dans l'article que les ViT légers fonctionnent généralement mieux que les CNN légers sur les tâches visuelles, principalement en raison de leur module d'auto-attention multi-têtes (MSHA) qui permet au modèle d'apprendre des représentations globales. Cependant, les différences architecturales entre les ViT légers et les CNN légers n'ont pas été entièrement étudiées. Dans cette étude, les auteurs ont intégré des ViT légers dans le système efficace.

Savez-vous que les programmeurs seront en déclin dans quelques années ? Savez-vous que les programmeurs seront en déclin dans quelques années ? Nov 08, 2023 am 11:17 AM

Le magazine "ComputerWorld" a écrit un article disant que "la programmation disparaîtra d'ici 1960" parce qu'IBM a développé un nouveau langage FORTRAN, qui permet aux ingénieurs d'écrire les formules mathématiques dont ils ont besoin, puis de les soumettre à l'ordinateur pour que la programmation se termine. Picture Quelques années plus tard, nous avons entendu un nouveau dicton : tout homme d'affaires peut utiliser des termes commerciaux pour décrire ses problèmes et dire à l'ordinateur quoi faire. Grâce à ce langage de programmation appelé COBOL, les entreprises n'ont plus besoin de programmeurs. Plus tard, il est dit qu'IBM a développé un nouveau langage de programmation appelé RPG qui permet aux employés de remplir des formulaires et de générer des rapports, de sorte que la plupart des besoins de programmation de l'entreprise puissent être satisfaits grâce à lui.