Maison > interface Web > js tutoriel > Arbre binaire, programmation dynamique et méthode de backtracking en JavaScript (analyse de cas)

Arbre binaire, programmation dynamique et méthode de backtracking en JavaScript (analyse de cas)

angryTom
Libérer: 2019-11-28 13:21:24
avant
2334 Les gens l'ont consulté

Je l'ai écrit à la hâte. Tous les cas de test peuvent être exécutés. Cependant, en termes de mémoire et d'efficacité, il reste encore de nombreux domaines à améliorer, alors donnez-moi plus de conseils

Arbre binaire, programmation dynamique et méthode de backtracking en JavaScript (analyse de cas)

Description du problème

Étant donné un arbre binaire, le nœud racine est de niveau 1 et la profondeur est de 1. Ajoutez une ligne de nœuds avec la valeur v à son dème niveau.

Ajouter une règle : étant donné une valeur de profondeur d (entier positif), pour chaque nœud N non vide dans la couche de profondeur d-1, créer deux sous-arbres gauche et des sous-arbres droits avec des valeurs​​v pour N Arbre.

Connectez le sous-arbre gauche d'origine de N au sous-arbre gauche du nouveau nœud v;

Connectez le sous-arbre droit d'origine de N au sous-arbre droit du nouveau nœud v.

Si la valeur de d est 1 et que la profondeur d - 1 n'existe pas, un nouveau nœud racine v sera créé et l'arbre entier d'origine servira de sous-arbre gauche de v.

Exemple

[Recommandations de cours associées : Tutoriel vidéo JavaScript]

Input: 
A binary tree as following:       4
     /   \    2     6
   / \   / 
  3   1 5   v = 1d = 2Output: 
       4
      / \     1   1
    /     \   2       6
  / \     / 
 3   1   5
Copier après la connexion

Idée de base

Parcours de pré-commande de l'arbre binaire

La structure de base du code

n'est pas la structure finale, mais la structure générale

/**
 * @param {number} cd:current depth,递归当前深度
 * @param {number} td:target depth, 目标深度
 */
var traversal = function (node, v, cd, td) {
    // 递归到目标深度,创建新节点并返回
  if (cd === td) {
    // return 新节点
  }
  // 向左子树递归
  if (node.left) {
    node.left = traversal (node.left, v, cd + 1, td);
  }
  // 向右子树递归
  if (node.right) {
    node.right = traversal (node.right, v, cd + 1, td);
  }
  // 返回旧节点
  return node;
};
/**
 * Definition for a binary tree node.
 * function TreeNode(val) {
 *     this.val = val;
 *     this.left = this.right = null;
 * }
 */
/**
 * @param {TreeNode} root
 * @param {number} v
 * @param {number} d
 * @return {TreeNode}
 */
var addOneRow = function (root, v, td) {
    // 从根节点开始递归
  traversal (root, v, 1, td);
  return root;
};
Copier après la connexion

Analyse détaillée

Nous pouvons classer la discussion et la traiter en trois situations

Scénario 1 : Profondeur cible

Méthode de traitement : Le nœud val remplace le nœud correspondant à la profondeur cible, et

● Si le nœud cible est à l'origine le sous-arbre gauche, alors la cible Le nœud est à gauche du nœud val après la réinitialisation du sous-arbre

● Si le nœud cible était à l'origine le sous-arbre droit, alors après la réinitialisation, le nœud cible est le sous-arbre droit du nœud val

2 situations : profondeur cible > la profondeur maximale du chemin récursif actuel

En lisant la question, j'ai trouvé qu'il y avait une telle description : "La plage de la valeur de profondeur d'entrée d est : [1, la profondeur maximale de l'arbre binaire + 1 ]”

Ainsi, lorsque la profondeur cible se trouve être une couche plus profonde que la profondeur de l'arbre sur le chemin actuel, la méthode de traitement est la suivante :

Ajouter de nouvelles branches gauche et droite du nœud val du nœud de la couche inférieure

Cas 3 : La profondeur cible est de 1

Analysons à nouveau le sens de la question. La question dit : "Si la valeur de d est 1 et que la profondeur d - 1 n'existe pas, alors un nouveau nœud racine v est créé, et l'arbre entier d'origine sera utilisé comme sous-arbre gauche de v. "

Cela signifie que lorsque : la profondeur cible est de 1. Quand, notre méthode de traitement est comme ceci

Tous les codes

/**
 * @param {v} val,插入节点携带的值
 * @param {cd} current depth,递归当前深度
 * @param {td} target depth, 目标深度
 * @param {isLeft}  判断原目标深度的节点是在左子树还是右子树
 */
var traversal = function (node, v, cd, td, isLeft) {
  debugger;
  if (cd === td) {
    const newNode = new TreeNode (v);
    // 如果原来是左子树,重置后目标节点还是在左子树上,否则相反
    if (isLeft) {
      newNode.left = node;
    } else {
      newNode.right = node;
    }
    return newNode;
  }
  // 处理上述的第1和第2种情况
  if (node.left || (node.left === null && cd + 1 === td)) {
    node.left = traversal (node.left, v, cd + 1, td, true);
  }
  if (node.right || (node.right === null && cd + 1 === td)) {
    node.right = traversal (node.right, v, cd + 1, td, false);
  }
  return node;
};
/**
 * Definition for a binary tree node.
 * function TreeNode(val) {
 *     this.val = val;
 *     this.left = this.right = null;
 * }
 */
/**
 * @param {TreeNode} root
 * @param {number} v
 * @param {number} d
 * @return {TreeNode}
 */
var addOneRow = function (root, v, td) {
  // 处理目标深度为1的情况,也就是上述的第3种情况
  if (td === 1) {
    const n = new TreeNode (v);
    n.left = root;
    return n;
  }
  traversal (root, v, 1, td);
  return root;
};
Copier après la connexion

Fractionnement de mots

Description du problème

Étant donné une chaîne non vide s et un dictionnaire wordDict contenant une liste de mots non vide, déterminez si s peut être divisé par des espaces en un ou plusieurs mots apparaissant dans le dictionnaire.

Instructions :

1. Les mots du dictionnaire peuvent être réutilisés lors du fractionnement.

2.你可以假设字典中没有重复的单词。

Example 

example1
输入: s = "applepenapple", wordDict = ["apple", "pen"]
输出: true解释: 返回 true 因为 "applepenapple" 可以被拆分成 "apple pen apple"。
注意: 你可以重复使用字典中的单词。

example2
输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
输出: false来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/word-break
Copier après la connexion

基本思想 

动态规划

具体分析

动态规划的关键点是:寻找状态转移方程

有了这个状态转移方程,我们就可以根据上一阶段状态和决策结果,去求出本阶段的状态和结果

然后,就可以从初始值,不断递推求出最终结果。

在这个问题里,我们使用一个一维数组来存放动态规划过程的递推数据

假设这个数组为dp,数组元素都为true或者false,

dp[N] 存放的是字符串s中从0到N截取的子串是否是“可拆分”的布尔值

让我们从一个具体的中间场景出发来思考计算过程

假设我们有

wordDict = ['ab','cd','ef']
s ='abcdef'
Copier après la connexion

并且假设目前我们已经得出了N=1到N=5的情况,而现在需要计算N=6的情况

或者说,我们已经求出了dp[1] 到dp[5]的布尔值,现在需要计算dp[6] = ?

该怎么计算呢?

现在新的字符f被加入到序列“abcde”的后面,如此以来,就新增了以下几种6种需要计算的情况

A序列 + B序列1.abcdef + ""
2.abcde + f3.abcd + ef4.abc + def5.ab + cdef6.a + bcdef
注意:当A可拆且B可拆时,则A+B也是可拆分的
Copier après la connexion

从中我们不难发现两点

1. 当A可拆且B可拆时,则A+B也是可拆分的

2. 这6种情况只要有一种组合序列是可拆分的,abcdef就一定是可拆的,也就得出dp[6] = true了

下面是根据根据已有的dp[1] 到dp[5]的布尔值,动态计算dp[6] 的过程

(注意只要计算到可拆,就可以break循环了)

具体代码

var initDp = function (len) {
  let dp = new Array (len + 1).fill (false);
  return dp;
};
/**
 * @param {string} s
 * @param {string[]} wordDict
 * @return {boolean}
 */
var wordBreak = function (s, wordDict) {
  // 处理空字符串
  if (s === '' && wordDict.indexOf ('') === -1) {
    return false;
  }
  const len = s.length;
  // 默认初始值全部为false
  const dp = initDp (len);
  const a = s.charAt (0);
  // 初始化动态规划的初始值
  dp[0] = wordDict.indexOf (a) === -1 ? false : true;
  dp[1] = wordDict.indexOf (a) === -1 ? false : true;
  // i:end
  // j:start
  for (let i = 1; i < len; i++) {
    for (let j = 0; j <= i; j++) {
      // 序列[0,i] = 序列[0,j] + 序列[j,i]
      // preCanBreak表示序列[0,j]是否是可拆分的
      const preCanBreak = dp[j];
      // 截取序列[j,i]
      const str = s.slice (j, i + 1);
      // curCanBreak表示序列[j,i]是否是可拆分的
      const curCanBreak = wordDict.indexOf (str) !== -1;
      // 情况1: 序列[0,j]和序列[j,i]都可拆分,那么序列[0,i]肯定也是可拆分的
      const flag1 = preCanBreak && curCanBreak;
      // 情况2: 序列[0,i]本身就存在于字典中,所以是可拆分的
      const flag2 = curCanBreak && j === 0;
      if (flag1 || flag2) {
        // 设置bool值,本轮计算结束
        dp[i + 1] = true;
        break;
      }
    }
  }
  // 返回最后结果
  return dp[len];
};
Copier après la connexion

全排列

题目描述

给定一个没有重复数字的序列,返回其所有可能的全排列。

Example

输入: [1,2,3]
输出:
[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]
Copier après la connexion

基本思想

回溯法

具体分析

1. 深度优先搜索搞一波,index在递归中向前推进

2. 当index等于数组长度的时候,结束递归,收集到results中(数组记得要深拷贝哦)

3. 两次数字交换的运用,计算出两种情况

总结

想不通没关系,套路一波就完事了

具体代码

var swap = function (nums, i, j) {
  const temp = nums[i];
  nums[i] = nums[j];
  nums[j] = temp;
};

var recursion = function (nums, results, index) {
  // 剪枝
  if (index >= nums.length) {
    results.push (nums.concat ());
    return;
  }
  // 初始化i为index
  for (let i = index; i < nums.length; i++) {
    // index 和 i交换??
    // 统计交换和没交换的两种情况
    swap (nums, index, i);
    recursion (nums, results, index + 1);
    swap (nums, index, i);
  }
};
/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var permute = function (nums) {
  const results = [];
  recursion (nums, results, 0);
  return results;
};
Copier après la connexion

本文来自 js教程 栏目,欢迎学习!  

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:cnblogs.com
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal