


Implémentation d'un arbre couvrant minimum en langage C
1. Introduction à l'arbre couvrant minimum
Qu'est-ce que l'arbre couvrant minimum ?
L'arbre couvrant minimum (MST) consiste à trouver un arbre T dans un graphe non orienté donné G(V,E), tel que cet arbre ait tous les sommets du graphe G, et que toutes les arêtes proviennent des arêtes. dans le graphique G, et satisfont la somme minimale des poids de bord de l'arbre entier.
L'algorithme 2.prim
est très similaire à l'algorithme de Dijkstra ! ! Veuillez regarder le diagramme Gif suivant. L'idée principale de l'algorithme prim est de définir un ensemble S pour le graphe G (V, E), de stocker les sommets visités, puis de sélectionner le sommet avec la plus petite distance la plus courte du sommet. définissez S à chaque fois à partir de l'ensemble V-S (noté u), accédez et rejoignez l'ensemble S. Ensuite, laissez le sommet u être le milieu et optimisez la distance la plus courte entre tous les sommets v pouvant être atteints depuis u et l'ensemble s. Cette opération est effectuée n fois jusqu'à ce que l'ensemble s contienne tous les sommets.
La différence est que dist dans l'algorithme de Dijkstra est le chemin le plus court du point source s au sommet w tandis que dist dans l'algorithme de prim va de l'ensemble S au sommet w ; , ce qui suit est une comparaison de leurs descriptions de pseudocode. Pour une description détaillée de l'algorithme de Dijkstra, veuillez vous référer à l'article
Implémentation de l'algorithme :
#include<iostream> #include<vector> #define INF 100000 #define MaxVertex 105 typedef int Vertex; int G[MaxVertex][MaxVertex]; int parent[MaxVertex]; // 并查集 int dist[MaxVertex]; // 距离 int Nv; // 结点 int Ne; // 边 int sum; // 权重和 using namespace std; vector<Vertex> MST; // 最小生成树 // 初始化图信息 void build(){ Vertex v1,v2; int w; cin>>Nv>>Ne; for(int i=1;i<=Nv;i++){ for(int j=1;j<=Nv;j++) G[i][j] = 0; // 初始化图 dist[i] = INF; // 初始化距离 parent[i] = -1; // 初始化并查集 } // 初始化点 for(int i=0;i<Ne;i++){ cin>>v1>>v2>>w; G[v1][v2] = w; G[v2][v1] = w; } } // Prim算法前的初始化 void IniPrim(Vertex s){ dist[s] = 0; MST.push_back(s); for(Vertex i =1;i<=Nv;i++) if(G[s][i]){ dist[i] = G[s][i]; parent[i] = s; } } // 查找未收录中dist最小的点 Vertex FindMin(){ int min = INF; Vertex xb = -1; for(Vertex i=1;i<=Nv;i++) if(dist[i] && dist[i] < min){ min = dist[i]; xb = i; } return xb; } void output(){ cout<<"被收录顺序:"<<endl; for(Vertex i=1;i<=Nv;i++) cout<<MST[i]<<" "; cout<<"权重和为:"<<sum<<endl; cout<<"该生成树为:"<<endl; for(Vertex i=1;i<=Nv;i++) cout<<parent[i]<<" "; } void Prim(Vertex s){ IniPrim(s); while(1){ Vertex v = FindMin(); if(v == -1) break; sum += dist[v]; dist[v] = 0; MST.push_back(v); for(Vertex w=1;w<=Nv;w++) if(G[v][w] && dist[w]) if(G[v][w] < dist[w]){ dist[w] = G[v][w]; parent[w] = v; } } } int main(){ build(); Prim(1); output(); return 0; }
. À propos de l'algorithme prim Pour une explication plus détaillée, veuillez vous référer à la vidéo https://www.bilibili.com/video/av55114968?p=99
Algorithme 3.kruskal
L'algorithme de Kruskal peut également être utilisé. Pour résoudre le problème de l'arbre couvrant minimum, l'idée de l'algorithme est facile à comprendre. L'idée de l'algorithme est typique des arêtes gourmandes, l'idée de l'algorithme est :
● Masquer toutes les arêtes du graphique. dans l'état initial, de sorte que chaque sommet du graphique soit un seul bloc connecté, et il y a n blocs connectés au total
● Trier toutes les arêtes en fonction du poids de l'arête, de petit à grand
● Testez toutes les arêtes en fonction du poids de l'arête, de petit à grand, si si les deux sommets connectés par l'arête de test actuelle ne sont pas dans le même bloc connecté, alors l'arête de test est ajoutée à l'arbre couvrant minimum actuel, sinon l'arête est rejeté.
● Répétez l'étape précédente jusqu'à ce que le nombre d'arêtes dans l'arbre couvrant minimum soit égal au nombre total de sommets moins un ou qu'elle se termine lorsque toutes les arêtes sont testées si à la fin, le nombre d'arêtes dans ; l'arbre couvrant minimum est inférieur au nombre total de sommets moins un 1, indiquant que le graphe n'est pas connecté.
Veuillez consulter le Gif ci-dessous !
Implémentation de l'algorithme :
#include<iostream> #include<string> #include<vector> #include<queue> #define INF 100000 #define MaxVertex 105 typedef int Vertex; int G[MaxVertex][MaxVertex]; int parent[MaxVertex]; // 并查集最小生成树 int Nv; // 结点 int Ne; // 边 int sum; // 权重和 using namespace std; struct Node{ Vertex v1; Vertex v2; int weight; // 权重 // 重载运算符成最大堆 bool operator < (const Node &a) const { return weight>a.weight; } }; vector<Node> MST; // 最小生成树 priority_queue<Node> q; // 最小堆 // 初始化图信息 void build(){ Vertex v1,v2; int w; cin>>Nv>>Ne; for(int i=1;i<=Nv;i++){ for(int j=1;j<=Nv;j++) G[i][j] = 0; // 初始化图 parent[i] = -1; } // 初始化点 for(int i=0;i<Ne;i++){ cin>>v1>>v2>>w; struct Node tmpE; tmpE.v1 = v1; tmpE.v2 = v2; tmpE.weight = w; q.push(tmpE); } } // 路径压缩查找 int Find(int x){ if(parent[x] < 0) return x; else return parent[x] = Find(parent[x]); } // 按秩归并 void Union(int x1,int x2){ if(parent[x1] < parent[x2]){ parent[x1] += parent[x2]; parent[x2] = x1; }else{ parent[x2] += parent[x1]; parent[x1] = x2; } } void Kruskal(){ // 最小生成树的边不到 Nv-1 条且还有边 while(MST.size()!= Nv-1 && !q.empty()){ Node E = q.top(); // 从最小堆取出一条权重最小的边 q.pop(); // 出队这条边 if(Find(E.v1) != Find(E.v2)){ // 检测两条边是否在同一集合 sum += E.weight; Union(E.v1,E.v2); // 并起来 MST.push_back(E); } } } void output(){ cout<<"被收录顺序:"<<endl; for(Vertex i=0;i<Nv;i++) cout<<MST[i].weight<<" "; cout<<"权重和为:"<<sum<<endl; for(Vertex i=1;i<=Nv;i++) cout<<parent[i]<<" "; cout<<endl; } int main(){ build(); Kruskal(); output(); return 0; }
Pour une explication plus détaillée de l'algorithme Kruskal, veuillez vous référer à la vidéo https://www.bilibili.com/ video/av55114968?p =100
Cours recommandés : Tutoriel du langage C
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds





C Structure des données du langage: La représentation des données de l'arborescence et du graphique est une structure de données hiérarchique composée de nœuds. Chaque nœud contient un élément de données et un pointeur vers ses nœuds enfants. L'arbre binaire est un type spécial d'arbre. Chaque nœud a au plus deux nœuds enfants. Les données représentent StrustReenode {intdata; structTreenode * gauche; structureReode * droite;}; L'opération crée une arborescence d'arborescence arborescence (prédécision, ordre dans l'ordre et ordre ultérieur) Le nœud d'insertion de l'arborescence des arbres de recherche de nœud Graph est une collection de structures de données, où les éléments sont des sommets, et ils peuvent être connectés ensemble via des bords avec des données droites ou peu nombreuses représentant des voisins.

La vérité sur les problèmes de fonctionnement des fichiers: l'ouverture des fichiers a échoué: les autorisations insuffisantes, les mauvais chemins de mauvais et les fichiers occupés. L'écriture de données a échoué: le tampon est plein, le fichier n'est pas écrivatif et l'espace disque est insuffisant. Autres FAQ: traversée de fichiers lents, encodage de fichiers texte incorrect et erreurs de lecture de fichiers binaires.

C Guide de programmation multithreading Language: Création de threads: Utilisez la fonction PTHREAD_CREATE () pour spécifier l'ID de thread, les propriétés et les fonctions de thread. Synchronisation des threads: empêchez la concurrence des données via des mutex, des sémaphores et des variables conditionnelles. Cas pratique: utilisez le multi-lancement pour calculer le numéro Fibonacci, attribuer des tâches à plusieurs threads et synchroniser les résultats. Dépannage: résoudre des problèmes tels que les accidents de programme, les réponses d'arrêt de fil et les goulots d'étranglement des performances.

Comment produire un compte à rebours en C? Réponse: Utilisez des instructions de boucle. Étapes: 1. Définissez la variable N et stockez le numéro de compte à rebours à la sortie; 2. Utilisez la boucle while pour imprimer en continu n jusqu'à ce que n soit inférieur à 1; 3. Dans le corps de la boucle, imprimez la valeur de n; 4. À la fin de la boucle, soustrayez N par 1 pour sortir le prochain plus petit réciproque.

Les algorithmes sont l'ensemble des instructions pour résoudre les problèmes, et leur vitesse d'exécution et leur utilisation de la mémoire varient. En programmation, de nombreux algorithmes sont basés sur la recherche et le tri de données. Cet article présentera plusieurs algorithmes de récupération et de tri de données. La recherche linéaire suppose qu'il existe un tableau [20,500,10,5,100,1,50] et doit trouver le numéro 50. L'algorithme de recherche linéaire vérifie chaque élément du tableau un par un jusqu'à ce que la valeur cible soit trouvée ou que le tableau complet soit traversé. L'organigramme de l'algorithme est le suivant: Le pseudo-code pour la recherche linéaire est le suivant: Vérifiez chaque élément: Si la valeur cible est trouvée: return True return false C Implementation: # include # includeIntMain (void) {i

Les fonctions de langue C sont des blocs de code réutilisables, des paramètres de réception pour le traitement et des résultats de retour. Il est similaire au couteau suisse, puissant et nécessite une utilisation minutieuse. Les fonctions incluent des éléments tels que la définition des formats, des paramètres, des valeurs de retour et des corps de fonction. L'utilisation avancée comprend des pointeurs de fonction, des fonctions récursives et des fonctions de rappel. Les erreurs communes sont le type de type et oublier de déclarer les prototypes. Les compétences de débogage comprennent l'impression des variables et l'utilisation d'un débogueur. L'optimisation des performances utilise des fonctions en ligne. La conception des fonctions doit suivre le principe de la responsabilité unique. La maîtrise des fonctions du langage C peut améliorer considérablement l'efficacité de la programmation et la qualité du code.

C Structure des données du langage: Aperçu du rôle clé de la structure des données dans l'intelligence artificielle dans le domaine de l'intelligence artificielle, les structures de données sont cruciales pour traiter de grandes quantités de données. Les structures de données fournissent un moyen efficace d'organiser et de gérer les données, d'optimiser les algorithmes et d'améliorer l'efficacité du programme. Les structures de données courantes utilisées couramment les structures de données dans le langage C comprennent: les tableaux: un ensemble d'éléments de données stockés consécutivement avec le même type. Structure: un type de données qui organise différents types de données ensemble et leur donne un nom. Liste liée: une structure de données linéaire dans laquelle les éléments de données sont connectés ensemble par des pointeurs. Stack: Structure de données qui suit le dernier principe de premier-out (LIFO). File: Structure de données qui suit le premier principe de première sortie (FIFO). Cas pratique: le tableau adjacent dans la théorie des graphiques est l'intelligence artificielle

Dépannage des conseils pour les fichiers de traitement du langage C Lors du traitement des fichiers dans le langage C, vous pouvez rencontrer divers problèmes. Les problèmes suivants sont des problèmes communs et des solutions correspondantes: Problème 1: Impossible d'ouvrir le code de fichier: fichier * fp = fopen ("myfile.txt", "r"); if (fp == null) {// ouverture de fichier a échoué} Raison: le fichier d'erreur de fichier Fichier ne existe pas sans la lecture de fichier Code de lecture de fichier: Charbuffer [100]; size_tread_bytes = Fread (tampon, 1, siz
