Comment apprendre le Big Data
La première étape
Pour ceux qui n'ont aucune connaissance de base, il n'est peut-être pas trop facile de se lancer au début. Parce que vous devez maîtriser un langage de programmation informatique, il existe de nombreux langages de programmation informatique, et Java est actuellement l'un des langages de programmation réseau les plus utilisés. Avant d'apprendre la technologie Big Data, vous avez besoin de certaines technologies Java comme support de base. Java n'a besoin que de comprendre certains concepts de base et vous pouvez l'utiliser pour écrire des applications adaptées à diverses situations.
Lors de l'apprentissage de Java, nous devons généralement apprendre ces cours : HTML&CSS&JS, bases de Java, JDBC et base de données, technologie web Java JSP, technologie jQuery et AJAX, SpringMVC, Mybatis, Hibernate, etc. Ces cours peuvent nous aider à mieux comprendre Java et à apprendre à utiliser Java.
Deuxième étape
Après avoir appris le langage de programmation, vous pouvez généralement étudier la partie big data du cours. D'une manière générale, le temps nécessaire pour apprendre la partie Big Data est plus court que le temps nécessaire pour apprendre Java. Les cours Big Data comprennent une introduction à la technologie Big Data, aux langages d'analyse avancés pour les données massives, au stockage distribué pour le stockage massif de données et à l'informatique distribuée pour l'analyse massive des données, ainsi que des cours professionnels sur Linux, Hadoop, Scala, HBase, Hive, Étincelle, etc. Si vous souhaitez apprendre complètement le big data, ces cours sont indispensables.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds



Compétences en matière de traitement de la structure des Big Data : Chunking : décomposez l'ensemble de données et traitez-le en morceaux pour réduire la consommation de mémoire. Générateur : générez des éléments de données un par un sans charger l'intégralité de l'ensemble de données, adapté à des ensembles de données illimités. Streaming : lisez des fichiers ou interrogez les résultats ligne par ligne, adapté aux fichiers volumineux ou aux données distantes. Stockage externe : pour les ensembles de données très volumineux, stockez les données dans une base de données ou NoSQL.

AEC/O (Architecture, Engineering & Construction/Operation) fait référence aux services complets qui assurent la conception architecturale, la conception technique, la construction et l’exploitation dans le secteur de la construction. En 2024, l’industrie de l’AEC/O est confrontée à des défis changeants au milieu des progrès technologiques. Cette année devrait voir l’intégration de technologies avancées, annonçant un changement de paradigme dans la conception, la construction et l’exploitation. En réponse à ces changements, les industries redéfinissent les processus de travail, ajustent les priorités et renforcent la collaboration pour s'adapter aux besoins d'un monde en évolution rapide. Les cinq tendances majeures suivantes dans l'industrie AEC/O deviendront des thèmes clés en 2024, lui recommandant d'évoluer vers un avenir plus intégré, réactif et durable : chaîne d'approvisionnement intégrée, fabrication intelligente.

À l'ère d'Internet, le Big Data est devenu une nouvelle ressource. Avec l'amélioration continue de la technologie d'analyse du Big Data, la demande de programmation Big Data est devenue de plus en plus urgente. En tant que langage de programmation largement utilisé, les avantages uniques du C++ dans la programmation Big Data sont devenus de plus en plus importants. Ci-dessous, je partagerai mon expérience pratique dans la programmation Big Data C++. 1. Choisir la structure de données appropriée Le choix de la structure de données appropriée est une partie importante de l'écriture de programmes Big Data efficaces. Il existe une variété de structures de données en C++ que nous pouvons utiliser, telles que des tableaux, des listes chaînées, des arbres, des tables de hachage, etc.

1. Contexte de la construction de la plateforme 58 Portraits Tout d'abord, je voudrais partager avec vous le contexte de la construction de la plateforme 58 Portraits. 1. La pensée traditionnelle de la plate-forme de profilage traditionnelle ne suffit plus. La création d'une plate-forme de profilage des utilisateurs s'appuie sur des capacités de modélisation d'entrepôt de données pour intégrer les données de plusieurs secteurs d'activité afin de créer des portraits d'utilisateurs précis. Elle nécessite également l'exploration de données pour comprendre le comportement et les intérêts des utilisateurs. et besoins, et fournir des capacités côté algorithmes ; enfin, il doit également disposer de capacités de plate-forme de données pour stocker, interroger et partager efficacement les données de profil utilisateur et fournir des services de profil. La principale différence entre une plate-forme de profilage d'entreprise auto-construite et une plate-forme de profilage de middle-office est que la plate-forme de profilage auto-construite dessert un seul secteur d'activité et peut être personnalisée à la demande. La plate-forme de mid-office dessert plusieurs secteurs d'activité et est complexe ; modélisation et offre des fonctionnalités plus générales. 2.58 Portraits d'utilisateurs de l'arrière-plan de la construction du portrait sur la plate-forme médiane 58

À l’ère actuelle du Big Data, le traitement et l’analyse des données sont devenus un support important pour le développement de diverses industries. En tant que langage de programmation doté d'une efficacité de développement élevée et de performances supérieures, le langage Go a progressivement attiré l'attention dans le domaine du big data. Cependant, par rapport à d'autres langages tels que Java, Python, etc., le langage Go prend en charge relativement mal les frameworks Big Data, ce qui a causé des problèmes à certains développeurs. Cet article explorera les principales raisons du manque de framework Big Data dans le langage Go, proposera des solutions correspondantes et l'illustrera avec des exemples de code spécifiques. 1. Allez dans la langue

Le lancement du produit d'automne 2023 de Yizhiwei s'est terminé avec succès ! Revoyons ensemble les moments forts de la conférence ! 1. Une ouverture intelligente et inclusive, permettant aux jumeaux numériques de devenir productifs Ning Haiyuan, co-fondateur de Kangaroo Cloud et PDG de Yizhiwei, a déclaré dans son discours d'ouverture : Lors de la réunion stratégique de l'entreprise de cette année, nous avons positionné l'orientation principale de la recherche et du développement de produits comme « Ouverture intelligente et inclusive » « Trois capacités principales, en nous concentrant sur les trois mots-clés fondamentaux de « l'ouverture intelligente et inclusive », nous avons en outre proposé l'objectif de développement consistant à « faire des jumeaux numériques une force productive ». 2. EasyTwin : explorez un nouveau moteur de jumeau numérique plus facile à utiliser 1. De la version 0.1 à 1.0, continuez à explorer le moteur de rendu de fusion jumelle numérique pour obtenir de meilleures solutions avec un mode d'édition 3D mature, des plans interactifs pratiques et des ressources de modèle massives.

En tant que langage de programmation open source, le langage Go a progressivement reçu une attention et une utilisation généralisées ces dernières années. Il est privilégié par les programmeurs pour sa simplicité, son efficacité et ses puissantes capacités de traitement simultané. Dans le domaine du traitement du Big Data, le langage Go a également un fort potentiel. Il peut être utilisé pour traiter des données massives, optimiser les performances et peut être bien intégré à divers outils et frameworks de traitement du Big Data. Dans cet article, nous présenterons quelques concepts et techniques de base du traitement du Big Data en langage Go, et montrerons comment utiliser le langage Go à travers des exemples de code spécifiques.

Dans le traitement du Big Data, l'utilisation d'une base de données en mémoire (telle qu'Aerospike) peut améliorer les performances des applications C++ car elle stocke les données dans la mémoire de l'ordinateur, éliminant ainsi les goulots d'étranglement d'E/S disque et augmentant considérablement les vitesses d'accès aux données. Des cas pratiques montrent que la vitesse de requête lors de l'utilisation d'une base de données en mémoire est plusieurs fois plus rapide que lors de l'utilisation d'une base de données sur disque dur.