Introduction aux algorithmes courants d'équilibrage de charge
Algorithmes couramment utilisés pour l'équilibrage de charge :
1. Polling (round robin)
Le polling est un équilibrage de charge A. Algorithme relativement basique et simple, il ne nécessite pas la configuration de paramètres supplémentaires. En supposant qu'il y a M serveurs dans le fichier de configuration, l'algorithme parcourt la liste des nœuds de serveur et sélectionne un serveur à chaque tour dans l'ordre des nœuds pour traiter la demande. Lorsque tous les nœuds ont été appelés une fois, l’algorithme parcourra à nouveau en commençant par le premier nœud.
Caractéristiques :
Étant donné que chaque requête de cet algorithme est attribuée à différents serveurs un par un dans l'ordre chronologique, il convient aux situations de cluster avec des performances de serveur similaires, où chaque serveur supporte la même charge . Cependant, pour les clusters avec des performances de serveur différentes, cet algorithme peut facilement causer des problèmes tels qu'une allocation déraisonnable des ressources.
2. Les sondages pondérés
Afin d'éviter les inconvénients causés par les sondages ordinaires, les sondages pondérés ont vu le jour. Dans le cas d'un sondage pondéré, chaque serveur aura son propre poids. De manière générale, une valeur de poids plus élevée signifie de meilleures performances du serveur et il peut gérer plus de requêtes. Dans cet algorithme, les requêtes des clients sont allouées proportionnellement à leur poids. Lorsqu'une requête arrive, le serveur ayant le poids le plus élevé est attribué en premier.
Caractéristiques :
Une interrogation pondérée peut être appliquée à des clusters avec des performances de serveur variables pour rendre l'allocation des ressources plus rationnelle.
L'idée principale est de parcourir chaque nœud de serveur et de calculer le poids du nœud. La règle de calcul est la somme de current_weight et de son effective_weight correspondant. À chaque tour de parcours, le nœud avec le poids le plus élevé est sélectionné comme étant. nœud de serveur optimal. Parmi eux, effective_weight changera en fonction de la situation des ressources et de la situation de réponse lors de l'exécution de l'algorithme.
3. Hachage IP (hachage IP)
ip_hash alloue des serveurs en fonction de la valeur de hachage de l'adresse IP du client qui fait la demande. Cet algorithme peut garantir que toutes les demandes. envoyées à partir de la même adresse IP. Les requêtes sont mappées sur le même serveur, ou différentes adresses IP avec la même valeur de hachage sont mappées sur le même serveur.
Caractéristiques :
Cet algorithme résout dans une certaine mesure le problème de la session non partagée dans un environnement de déploiement de cluster.
Tutoriel recommandé : Tutoriel Nginx
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Écrit ci-dessus et compréhension personnelle de l'auteur : À l'heure actuelle, dans l'ensemble du système de conduite autonome, le module de perception joue un rôle essentiel. Le véhicule autonome roulant sur la route ne peut obtenir des résultats de perception précis que via le module de perception en aval. dans le système de conduite autonome, prend des jugements et des décisions comportementales opportuns et corrects. Actuellement, les voitures dotées de fonctions de conduite autonome sont généralement équipées d'une variété de capteurs d'informations de données, notamment des capteurs de caméra à vision panoramique, des capteurs lidar et des capteurs radar à ondes millimétriques pour collecter des informations selon différentes modalités afin d'accomplir des tâches de perception précises. L'algorithme de perception BEV basé sur la vision pure est privilégié par l'industrie en raison de son faible coût matériel et de sa facilité de déploiement, et ses résultats peuvent être facilement appliqués à diverses tâches en aval.

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

La couche inférieure de la fonction de tri C++ utilise le tri par fusion, sa complexité est O(nlogn) et propose différents choix d'algorithmes de tri, notamment le tri rapide, le tri par tas et le tri stable.

La convergence de l’intelligence artificielle (IA) et des forces de l’ordre ouvre de nouvelles possibilités en matière de prévention et de détection de la criminalité. Les capacités prédictives de l’intelligence artificielle sont largement utilisées dans des systèmes tels que CrimeGPT (Crime Prediction Technology) pour prédire les activités criminelles. Cet article explore le potentiel de l’intelligence artificielle dans la prédiction de la criminalité, ses applications actuelles, les défis auxquels elle est confrontée et les éventuelles implications éthiques de cette technologie. Intelligence artificielle et prédiction de la criminalité : les bases CrimeGPT utilise des algorithmes d'apprentissage automatique pour analyser de grands ensembles de données, identifiant des modèles qui peuvent prédire où et quand les crimes sont susceptibles de se produire. Ces ensembles de données comprennent des statistiques historiques sur la criminalité, des informations démographiques, des indicateurs économiques, des tendances météorologiques, etc. En identifiant les tendances qui pourraient échapper aux analystes humains, l'intelligence artificielle peut donner du pouvoir aux forces de l'ordre.

01Aperçu des perspectives Actuellement, il est difficile d'atteindre un équilibre approprié entre efficacité de détection et résultats de détection. Nous avons développé un algorithme YOLOv5 amélioré pour la détection de cibles dans des images de télédétection optique haute résolution, en utilisant des pyramides de caractéristiques multicouches, des stratégies de têtes de détection multiples et des modules d'attention hybrides pour améliorer l'effet du réseau de détection de cibles dans les images de télédétection optique. Selon l'ensemble de données SIMD, le mAP du nouvel algorithme est 2,2 % meilleur que YOLOv5 et 8,48 % meilleur que YOLOX, permettant ainsi d'obtenir un meilleur équilibre entre les résultats de détection et la vitesse. 02 Contexte et motivation Avec le développement rapide de la technologie de télédétection, les images de télédétection optique à haute résolution ont été utilisées pour décrire de nombreux objets à la surface de la Terre, notamment des avions, des voitures, des bâtiments, etc. Détection d'objets dans l'interprétation d'images de télédétection

Les stratégies d'équilibrage de charge sont cruciales dans les frameworks Java pour une distribution efficace des requêtes. En fonction de la situation de concurrence, différentes stratégies ont des performances différentes : Méthode d'interrogation : performances stables sous une faible concurrence. Méthode d'interrogation pondérée : les performances sont similaires à la méthode d'interrogation sous faible concurrence. Méthode du moindre nombre de connexions : meilleures performances sous une concurrence élevée. Méthode aléatoire : simple mais peu performante. Hachage cohérent : équilibrage de la charge du serveur. Combiné à des cas pratiques, cet article explique comment choisir des stratégies appropriées basées sur les données de performances pour améliorer significativement les performances des applications.

1. Contexte de la construction de la plateforme 58 Portraits Tout d'abord, je voudrais partager avec vous le contexte de la construction de la plateforme 58 Portraits. 1. La pensée traditionnelle de la plate-forme de profilage traditionnelle ne suffit plus. La création d'une plate-forme de profilage des utilisateurs s'appuie sur des capacités de modélisation d'entrepôt de données pour intégrer les données de plusieurs secteurs d'activité afin de créer des portraits d'utilisateurs précis. Elle nécessite également l'exploration de données pour comprendre le comportement et les intérêts des utilisateurs. et besoins, et fournir des capacités côté algorithmes ; enfin, il doit également disposer de capacités de plate-forme de données pour stocker, interroger et partager efficacement les données de profil utilisateur et fournir des services de profil. La principale différence entre une plate-forme de profilage d'entreprise auto-construite et une plate-forme de profilage de middle-office est que la plate-forme de profilage auto-construite dessert un seul secteur d'activité et peut être personnalisée à la demande. La plate-forme de mid-office dessert plusieurs secteurs d'activité et est complexe ; modélisation et offre des fonctionnalités plus générales. 2.58 Portraits d'utilisateurs de l'arrière-plan de la construction du portrait sur la plate-forme médiane 58

Écrit ci-dessus & La compréhension personnelle de l'auteur est que dans le système de conduite autonome, la tâche de perception est un élément crucial de l'ensemble du système de conduite autonome. L'objectif principal de la tâche de perception est de permettre aux véhicules autonomes de comprendre et de percevoir les éléments environnementaux environnants, tels que les véhicules circulant sur la route, les piétons au bord de la route, les obstacles rencontrés lors de la conduite, les panneaux de signalisation sur la route, etc., aidant ainsi en aval modules Prendre des décisions et des actions correctes et raisonnables. Un véhicule doté de capacités de conduite autonome est généralement équipé de différents types de capteurs de collecte d'informations, tels que des capteurs de caméra à vision panoramique, des capteurs lidar, des capteurs radar à ondes millimétriques, etc., pour garantir que le véhicule autonome peut percevoir et comprendre avec précision l'environnement environnant. éléments , permettant aux véhicules autonomes de prendre les bonnes décisions pendant la conduite autonome. Tête
