Maison développement back-end Tutoriel Python Exemple de méthode montrant comment Python écrit un dictionnaire dans un fichier CSV

Exemple de méthode montrant comment Python écrit un dictionnaire dans un fichier CSV

Aug 24, 2020 pm 04:49 PM
csv python

Exemple de méthode montrant comment Python écrit un dictionnaire dans un fichier CSV

[Recommandations d'apprentissage associées : Tutoriel Python]

Dans le processus d'analyse des données lui-même, nous analysons et utilisons Python pour traiter les données (données massives ), nous convertissons ces données en objets Python, comme le dictionnaire le plus courant.

Par exemple, il existe désormais des centaines de milliers de données (bien sûr, des données aussi volumineuses utiliseront généralement le concept de base de données et ne seront pas exécutées dans la mémoire CPU. Il nous est impossible d'utiliser des fonctions pour). en calculer dans Excel ça vaut le coup, c'est irréaliste.
Excel ne convient qu'au traitement de quantités relativement petites de données et présente l'avantage de la commodité et de la rapidité
Supposons donc qu'il y ait autant de données. Maintenant, je veux analyser, convertir et enfin analyser et traiter les données. , puis écrivez les données dans le fichier CSV, cela répond aux exigences, voyons donc comment écrire le dictionnaire de données dans le fichier CSV.

Associez ce projet à un système de calcul de score que nous avons écrit auparavant. N'oubliez pas que nous l'avons écrit sous forme de fichier txt, qui a été présenté sous la forme d'un dictionnaire, améliorons-le maintenant, juste pour présenter ces données analysées. pour d’autres, par exemple, nous devons désormais archiver et stocker ces données.

Tout d'abord, nous avons créé une fonction qui écrit spécifiquement dans des fichiers CSV

def csv_writer():
Copier après la connexion

Ici, nous retirons d'abord la clé (en-tête) de nos données. Ici, nous utilisons Lorsqu'il s'agit d'une traversée. , certains amis ont demandé, pourquoi ne pas l'ajouter et l'écrire manuellement ? Je peux simplement copier quelques lignes. Mais réfléchissons-y s'il y a des dizaines de clés, comment pouvons-nous les copier directement ? un peu non automatisé, Python peut résoudre les problèmes de bureau. Ne prenez pas une heure, vous n'avez besoin que d'une minute.

a=[]
  dict=student_infos[0]
  for headers in sorted(dict.keys()):#把字典的键取出来
    a.append(headers)
  header=a#把列名给提取出来,用列表形式呈现
Copier après la connexion

L'en-tête ici est une liste

Ici, j'ai ouvert ce fichier et je me suis préparé à écrire, je vais expliquer les paramètres à l'intérieur un par un.

** a signifie écrire sous la forme "ajouter". S'il s'agit de "w", cela signifie que les données du fichier d'origine seront effacées avant l'écriture
une nouvelle ligne signifie qu'aucune ligne vide n'est ajoutée. entre les données.
encoding='utf-8' signifie que le format d'encodage est utf-8. Si vous ne souhaitez pas que des caractères chinois tronqués apparaissent lors de l'ouverture du fichier csv dans Excel, vous pouvez le supprimer sans l'écrire. .
Afin d'éviter que le fichier CSV dans pycharm ne soit tronqué, le codage des paramètres que nous utilisons ici est utf-8
et le format de codage du fichier Excel est gbk. Il est recommandé d'ajouter le codage. = paramètre 'utf-8'.
Si vous ne souhaitez pas que le fichier csv dans Excel soit tronqué, il est recommandé d'ouvrir le fichier csv dans le Bloc-notes et de l'enregistrer au format ANSI. **

with open('成绩更新.csv', 'a', newline='', encoding='utf-8') as f:
    writer = csv.DictWriter(f, fieldnames=header) # 提前预览列名,当下面代码写入数据时,会将其一一对应。
    writer.writeheader() # 写入列名
    writer.writerows(student_infos) # 写入数据
  print("数据已经写入成功!!!")
Copier après la connexion

Les données du dictionnaire ici sont les données que nous avons déjà analysées et traitées dans l'espace mémoire auparavant. J'écris ici la dernière ligne directement en utilisant .writerows (dictionnaire). avec writeheader() D'accord

En fait, écrire est si simple, et cela résout tous nos problèmes !


Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Vous avez un jeu croisé?
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: exemples de code et comparaison PHP et Python: exemples de code et comparaison Apr 15, 2025 am 12:07 AM

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Comment est la prise en charge du GPU pour Pytorch sur Centos Comment est la prise en charge du GPU pour Pytorch sur Centos Apr 14, 2025 pm 06:48 PM

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Python vs JavaScript: communauté, bibliothèques et ressources Python vs JavaScript: communauté, bibliothèques et ressources Apr 15, 2025 am 12:16 AM

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Explication détaillée du principe docker Explication détaillée du principe docker Apr 14, 2025 pm 11:57 PM

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Miniopen Centos Compatibilité Miniopen Centos Compatibilité Apr 14, 2025 pm 05:45 PM

Minio Object Storage: Déploiement haute performance dans le système Centos System Minio est un système de stockage d'objets distribué haute performance développé sur la base du langage Go, compatible avec Amazons3. Il prend en charge une variété de langages clients, notamment Java, Python, JavaScript et GO. Cet article introduira brièvement l'installation et la compatibilité de Minio sur les systèmes CentOS. Compatibilité de la version CentOS Minio a été vérifiée sur plusieurs versions CentOS, y compris, mais sans s'y limiter: CentOS7.9: fournit un guide d'installation complet couvrant la configuration du cluster, la préparation de l'environnement, les paramètres de fichiers de configuration, le partitionnement du disque et la mini

Comment faire fonctionner la formation distribuée de Pytorch sur CentOS Comment faire fonctionner la formation distribuée de Pytorch sur CentOS Apr 14, 2025 pm 06:36 PM

La formation distribuée par Pytorch sur le système CentOS nécessite les étapes suivantes: Installation de Pytorch: La prémisse est que Python et PIP sont installés dans le système CentOS. Selon votre version CUDA, obtenez la commande d'installation appropriée sur le site officiel de Pytorch. Pour la formation du processeur uniquement, vous pouvez utiliser la commande suivante: pipinstalltorchtorchVisionTorChaudio Si vous avez besoin d'une prise en charge du GPU, assurez-vous que la version correspondante de CUDA et CUDNN est installée et utilise la version Pytorch correspondante pour l'installation. Configuration de l'environnement distribué: la formation distribuée nécessite généralement plusieurs machines ou des GPU multiples uniques. Lieu

Comment choisir la version Pytorch sur Centos Comment choisir la version Pytorch sur Centos Apr 14, 2025 pm 06:51 PM

Lors de l'installation de Pytorch sur le système CentOS, vous devez sélectionner soigneusement la version appropriée et considérer les facteurs clés suivants: 1. Compatibilité de l'environnement du système: Système d'exploitation: Il est recommandé d'utiliser CentOS7 ou plus. CUDA et CUDNN: La version Pytorch et la version CUDA sont étroitement liées. Par exemple, Pytorch1.9.0 nécessite CUDA11.1, tandis que Pytorch2.0.1 nécessite CUDA11.3. La version CUDNN doit également correspondre à la version CUDA. Avant de sélectionner la version Pytorch, assurez-vous de confirmer que des versions compatibles CUDA et CUDNN ont été installées. Version Python: branche officielle de Pytorch

Comment installer nginx dans Centos Comment installer nginx dans Centos Apr 14, 2025 pm 08:06 PM

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.

See all articles