Maison Problème commun Quelle est la différence entre l'exploration de données et l'analyse de données ?

Quelle est la différence entre l'exploration de données et l'analyse de données ?

Dec 07, 2020 pm 03:16 PM
数据分析 数据挖掘

Différence : 1. La conclusion tirée par « l'analyse des données » est le résultat des activités intellectuelles humaines, tandis que la conclusion tirée par « l'exploration de données » est la connaissance découverte par la machine à partir de l'ensemble d'apprentissage [ou ensemble d'entraînement , ensemble d'échantillons] Règles ; 2. "L'analyse des données" ne peut pas établir de modèle mathématique et nécessite une modélisation manuelle, tandis que "l'exploration de données" complète directement la modélisation mathématique.

Quelle est la différence entre l'exploration de données et l'analyse de données ?

L'environnement d'exploitation de cet article : système Windows 7, ordinateur Dell G3.

Quelle est la différence entre le data mining et l'analyse de données ?

L'exploration de données consiste à trouver des règles cachées à partir de données massives. L'analyse des données a généralement un objectif clair.

La principale différence entre l'exploration de données et l'analyse de données

1 L'objectif de « l'analyse de données » est d'observer les données, tandis que l'objectif de « l'exploration de données » est. découvrir à partir des données "Knowledge Rules" KDD (Knowledge Discover in Database).

2. Les conclusions tirées par « l'analyse des données » sont les résultats des activités intellectuelles humaines, tandis que les conclusions tirées par le « data mining » sont les règles de connaissances découvertes par la machine à partir de l'ensemble d'apprentissage (ou ensemble d'entraînement, ensemble d'échantillons).

3. L'application de « l'analyse des données » pour tirer des conclusions est une activité intellectuelle humaine, tandis que les règles de connaissance découvertes par le « data mining » peuvent être directement appliquées aux prédictions.

4. "L'analyse des données" ne peut pas établir de modèle mathématique et nécessite une modélisation manuelle, tandis que le "data mining" complète directement la modélisation mathématique. Par exemple, l'essence de la modélisation cybernétique traditionnelle est de décrire la relation fonctionnelle entre les variables d'entrée et les variables de sortie.Le « data mining » peut établir automatiquement la relation fonctionnelle entre l'entrée et la sortie grâce à l'apprentissage automatique selon les « règles » dérivées de KDD. donné Un ensemble de paramètres d'entrée peut produire un ensemble de quantités de sortie.

Un exemple simple :

Il y a certaines personnes qui ne paient toujours pas à temps les opérateurs télécoms. Comment les détecter ?

Analyse des données : grâce à l'observation des données, nous avons constaté que 82 % des personnes qui ne paient pas à temps sont pauvres. La conclusion est donc que les personnes à faible revenu ont tendance à payer en retard. La conclusion est que les tarifs doivent être réduits.

Data mining : découvrez par vous-même les raisons profondes grâce à des algorithmes écrits. La raison peut être que les personnes qui vivent en dehors du cinquième périphérique ne paient pas à temps en raison de l'éloignement de l'environnement. La conclusion est qu’il faut créer davantage de halls d’affaires ou de points de paiement libre-service.

Pour plus d'articles connexes, veuillez visiter le Site Web PHP chinois ! !

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Commandes de chat et comment les utiliser
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Lisez des fichiers CSV et effectuez une analyse de données à l'aide de pandas Lisez des fichiers CSV et effectuez une analyse de données à l'aide de pandas Jan 09, 2024 am 09:26 AM

Pandas est un puissant outil d'analyse de données qui peut facilement lire et traiter différents types de fichiers de données. Parmi eux, les fichiers CSV sont l’un des formats de fichiers de données les plus courants et les plus utilisés. Cet article expliquera comment utiliser Pandas pour lire des fichiers CSV et effectuer une analyse de données, et fournira des exemples de code spécifiques. 1. Importez les bibliothèques nécessaires Tout d'abord, nous devons importer la bibliothèque Pandas et les autres bibliothèques associées qui peuvent être nécessaires, comme indiqué ci-dessous : importpandasaspd 2. Lisez le fichier CSV à l'aide de Pan

Introduction aux méthodes d'analyse des données Introduction aux méthodes d'analyse des données Jan 08, 2024 am 10:22 AM

Méthodes courantes d'analyse des données : 1. Méthode d'analyse comparative ; 2. Méthode d'analyse structurelle ; 3. Méthode d'analyse croisée ; 5. Méthode d'analyse des causes et des effets ; , Méthode d'analyse en composantes principales ; 9. Méthode d'analyse de dispersion ; 10. Méthode d'analyse matricielle. Introduction détaillée : 1. Méthode d'analyse comparative : Analyse comparative de deux ou plusieurs données pour trouver les différences et les modèles ; 2. Méthode d'analyse structurelle : Une méthode d'analyse comparative entre chaque partie de l'ensemble et l'ensemble. , etc.

11 distributions de base que les data scientists utilisent 95 % du temps 11 distributions de base que les data scientists utilisent 95 % du temps Dec 15, 2023 am 08:21 AM

Suite au dernier inventaire des « 11 graphiques de base que les data scientists utilisent 95 % du temps », nous vous présenterons aujourd'hui 11 distributions de base que les data scientists utilisent 95 % du temps. La maîtrise de ces distributions nous aide à comprendre plus profondément la nature des données et à faire des inférences et des prédictions plus précises lors de l'analyse des données et de la prise de décision. 1. Distribution normale La distribution normale, également connue sous le nom de distribution gaussienne, est une distribution de probabilité continue. Il présente une courbe symétrique en forme de cloche avec la moyenne (μ) comme centre et l'écart type (σ) comme largeur. La distribution normale a une valeur d'application importante dans de nombreux domaines tels que les statistiques, la théorie des probabilités et l'ingénierie.

Apprentissage automatique et analyse de données à l'aide du langage Go Apprentissage automatique et analyse de données à l'aide du langage Go Nov 30, 2023 am 08:44 AM

Dans la société intelligente d’aujourd’hui, l’apprentissage automatique et l’analyse des données sont des outils indispensables qui peuvent aider les individus à mieux comprendre et utiliser de grandes quantités de données. Dans ces domaines, le langage Go est également devenu un langage de programmation qui a beaucoup retenu l'attention. Sa rapidité et son efficacité en font le choix de nombreux programmeurs. Cet article explique comment utiliser le langage Go pour l'apprentissage automatique et l'analyse de données. 1. L'écosystème du langage Go d'apprentissage automatique n'est pas aussi riche que Python et R. Cependant, à mesure que de plus en plus de personnes commencent à l'utiliser, certaines bibliothèques et frameworks d'apprentissage automatique

11 visualisations avancées pour l'analyse des données et l'apprentissage automatique 11 visualisations avancées pour l'analyse des données et l'apprentissage automatique Oct 25, 2023 am 08:13 AM

La visualisation est un outil puissant pour communiquer des modèles et des relations de données complexes de manière intuitive et compréhensible. Ils jouent un rôle essentiel dans l’analyse des données, fournissant des informations souvent difficiles à discerner à partir de données brutes ou de représentations numériques traditionnelles. La visualisation est cruciale pour comprendre les modèles et les relations de données complexes, et nous présenterons les 11 graphiques les plus importants et incontournables qui aident à révéler les informations contenues dans les données et à rendre les données complexes plus compréhensibles et significatives. 1. KSPlotKSPlot est utilisé pour évaluer les différences de distribution. L'idée principale est de mesurer la distance maximale entre les fonctions de distribution cumulatives (CDF) de deux distributions. Plus la distance maximale est petite, plus ils appartiennent probablement à la même distribution. Par conséquent, il est principalement interprété comme un « système » permettant de déterminer les différences de distribution.

Comment utiliser les interfaces ECharts et PHP pour mettre en œuvre l'analyse des données et la prédiction de graphiques statistiques Comment utiliser les interfaces ECharts et PHP pour mettre en œuvre l'analyse des données et la prédiction de graphiques statistiques Dec 17, 2023 am 10:26 AM

Comment utiliser les interfaces ECharts et PHP pour mettre en œuvre l'analyse des données et la prédiction des graphiques statistiques. L'analyse et la prédiction des données jouent un rôle important dans divers domaines. Elles peuvent nous aider à comprendre les tendances et les modèles de données et fournir des références pour les décisions futures. ECharts est une bibliothèque de visualisation de données open source qui fournit des composants graphiques riches et flexibles capables de charger et de traiter dynamiquement des données à l'aide de l'interface PHP. Cet article présentera la méthode de mise en œuvre de l'analyse et de la prédiction des données de graphiques statistiques basée sur ECharts et l'interface PHP, et fournira

Analyse de données Excel intégrée Analyse de données Excel intégrée Mar 21, 2024 am 08:21 AM

1. Dans cette leçon, nous expliquerons l'analyse intégrée des données Excel. Nous la compléterons à travers un cas. Ouvrez le support de cours et cliquez sur la cellule E2 pour saisir la formule. 2. Nous sélectionnons ensuite la cellule E53 pour calculer toutes les données suivantes. 3. Ensuite, nous cliquons sur la cellule F2, puis nous entrons la formule pour la calculer. De même, en faisant glisser vers le bas, nous pouvons calculer la valeur souhaitée. 4. Nous sélectionnons la cellule G2, cliquons sur l'onglet Données, cliquez sur Validation des données, sélectionnons et confirmons. 5. Utilisons la même méthode pour remplir automatiquement les cellules ci-dessous qui doivent être calculées. 6. Ensuite, nous calculons le salaire réel et sélectionnons la cellule H2 pour saisir la formule. 7. Ensuite, nous cliquons sur le menu déroulant des valeurs pour cliquer sur d'autres nombres.

Quels sont les sites Web d'analyse de données recommandés ? Quels sont les sites Web d'analyse de données recommandés ? Mar 13, 2024 pm 05:44 PM

Recommandé : 1. Forum d'analyse des données commerciales ; 2. Forum économique de l'Assemblée populaire nationale – Domaine de l'économétrie et des statistiques ; 4. Forum d'apprentissage et d'échange sur l'exploration de données ; . Analyse des données ; 8. Institut de recherche sur l'exploration de données ; 9. S-PLUS, R Statistics Forum.