


Python introduit le JSON imbriqué pour se transformer en Dataframe en quelques secondes !
Tutoriel PythonLa colonne présente comment imbriquer JSON
Recommandé (gratuit) : Tutoriel Python
L'appel de API
et la base de données de documents renverront des objets JSON
imbriqués, lorsque nous utilisons Python
pour essayer de convertir les clés dans les objets imbriqués structure Une fois convertis en colonnes, les résultats suivants seront souvent obtenus lorsque les données sont chargées dans pandas
:
df = pd.DataFrame.from_records(results [“ issues”],columns = [“ key”,“ fields”])
Description : Ici, les résultats sont un grand dictionnaire, les problèmes sont une clé dans les résultats et la valeur des problèmes est une liste imbriquée de dictionnaires d'objets JSON, vous verrez la structure imbriquée JSON plus tard.
Le problème est que l'API renvoie une structure JSON
imbriquée, et les clés qui nous intéressent se trouvent effectivement à différents niveaux dans l'objet. La structure
imbriquée JSON
ressemble à ceci.
Ce que nous voulons, c'est quelque chose comme ça.
Ce qui suit prend comme exemple les données renvoyées par une API. Les API contiennent généralement des métadonnées sur les champs associés. Disons que ce sont les domaines que nous voulons.
- clé : clé JSON, au premier niveau.
- résumé : L'objet "champ" de deuxième niveau.
- nom du statut : Poste de troisième niveau.
- statutNom de la catégorie : Situé au 4ème niveau de nidification.
Comme ci-dessus, les champs que nous choisissons d'extraire se trouvent à 4 niveaux d'imbrication différents dans la structure JSON
de la liste des tickets, l'un après l'autre.
{ "expand": "schema,names", "issues": [ { "fields": { "issuetype": { "avatarId": 10300, "description": "", "id": "10005", "name": "New Feature", "subtask": False }, "status": { "description": "A resolution has been taken, and it is awaiting verification by reporter. From here issues are either reopened, or are closed.", "id": "5", "name": "Resolved", "statusCategory": { "colorName": "green", "id": 3, "key": "done", "name": "Done", } }, "summary": "Recovered data collection Defraglar $MFT problem" }, "id": "11861", "key": "CAE-160", }, { "fields": { ... more issues], "maxResults": 5, "startAt": 0, "total": 160 }
Une solution pas si bonne
Une option consiste à coder directement et à écrire une fonction qui trouve un champ spécifique, mais le problème est que chaque intégration doit be Appelez cette fonction pour définir les champs, puis appelez .apply
à la nouvelle colonne dans DataFrame
.
Afin d'obtenir les différents champs souhaités, nous extrayons d'abord les objets dans les champs en colonnes :
df = ( df["fields"] .apply(pd.Series) .merge(df, left_index=True, right_index = True) )
Comme le montre le tableau ci-dessus, seul un résumé est disponible, type de problème , statut, etc. Toujours enfoui dans des objets imbriqués.
Ce qui suit est une méthode pour extraire le nom dans issuetype.
# 提取issue type的name到一个新列叫"issue_type" df_issue_type = ( df["issuetype"] .apply(pd.Series) .rename(columns={"name": "issue_type_name"})["issue_type_name"] ) df = df.assign(issue_type_name = df_issue_type)
Comme ci-dessus, s'il y a trop de niveaux d'imbrication, vous devez implémenter la récursivité vous-même, car chaque niveau d'imbrication doit appeler une méthode comme celle ci-dessus pour analyser et ajouter à une nouvelle colonne.
Pour les amis ayant des bases de programmation faibles, il est en fait assez difficile d'en choisir une, en particulier pour les analystes de données, lorsqu'ils sont impatients d'utiliser des données, ils espèrent obtenir rapidement des données structurées à analyser.
Frère Dong partagera ci-dessous une pandas
solution intégrée.
Solution intégrée
pandas
a une fonction intégrée géniale appelée .json_normalize
. La documentation de
pandas
mentionne : Normaliser les données JSON
semi-structurées dans un tableau plat.
Tout le code de la solution précédente peut être complété à l'aide de cette fonction intégrée en seulement 3 lignes. Les étapes sont très simples, il suffit de comprendre l'utilisation suivante.
Déterminez les champs souhaités et utilisez le symbole .
Mettez la liste imbriquée que vous souhaitez traiter (ici results["issues"]
) comme paramètre dans .json_normalize
.
Filtrer la liste des CHAMPS que nous avons définis.
FIELDS = ["key", "fields.summary", "fields.issuetype.name", "fields.status.name", "fields.status.statusCategory.name"] df = pd.json_normalize(results["issues"]) df[FIELDS]
Oui, c'est aussi simple que cela.
Autres opérations
Chemin d'enregistrement
En plus de passer la liste results["issues"]
comme ci-dessus, nous utilisons également spécifie le chemin d'accès à la liste dans l'objet record_path
. JSON
# 使用路径而不是直接用results["issues"] pd.json_normalize(results, record_path="issues")[FIELDS]
Délimiteur personnalisé
Vous pouvez également utiliser le paramètre sep pour personnaliser le délimiteur pour les connexions de structure imbriquées, par exemple, remplacer le "." par défaut par "-" ci-dessous .### 用 "-" 替换默认的 "." FIELDS = ["key", "fields-summary", "fields-issuetype-name", "fields-status-name", "fields-status-statusCategory-name"] pd.json_normalize(results["issues"], sep = "-")[FIELDS]
Contrôler la récursion
Si vous ne souhaitez pas faire de récursion sur chaque objet enfant, vous pouvez utiliser le paramètre pour contrôler la profondeur. Dans ce cas, puisque le champ max_level
est au niveau 4 de l'objet statusCategory.name
, il ne sera pas inclus dans le JSON
résultant. DataFrame
# 只深入到嵌套第二级 pd.json_normalize(results, record_path="issues", max_level = 2)
de .json_normalize
Si vous ne comprenez pas, vous pouvez l'apprendre par vous-même. Cette fois, frère Dong le présentera ici. pandas
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.

VS Code est le code Visual Studio Nom complet, qui est un éditeur de code multiplateforme gratuit et open source et un environnement de développement développé par Microsoft. Il prend en charge un large éventail de langages de programmation et fournit une mise en surbrillance de syntaxe, une complétion automatique du code, des extraits de code et des invites intelligentes pour améliorer l'efficacité de développement. Grâce à un écosystème d'extension riche, les utilisateurs peuvent ajouter des extensions à des besoins et des langues spécifiques, tels que les débogueurs, les outils de mise en forme de code et les intégrations GIT. VS Code comprend également un débogueur intuitif qui aide à trouver et à résoudre rapidement les bogues dans votre code.
