Maison développement back-end Tutoriel Python Python introduit le JSON imbriqué pour se transformer en Dataframe en quelques secondes !

Python introduit le JSON imbriqué pour se transformer en Dataframe en quelques secondes !

Dec 29, 2020 am 09:34 AM
dataframe json pandas python 数据处理

Tutoriel PythonLa colonne présente comment imbriquer JSON

Python introduit le JSON imbriqué pour se transformer en Dataframe en quelques secondes !

Recommandé (gratuit) : Tutoriel Python

L'appel de API et la base de données de documents renverront des objets JSON imbriqués, lorsque nous utilisons Python pour essayer de convertir les clés dans les objets imbriqués structure Une fois convertis en colonnes, les résultats suivants seront souvent obtenus lorsque les données sont chargées dans pandas :

df = pd.DataFrame.from_records(results [“ issues”],columns = [“ key”,“ fields”])
Copier après la connexion
Description : Ici, les résultats sont un grand dictionnaire, les problèmes sont une clé dans les résultats et la valeur des problèmes est une liste imbriquée de dictionnaires d'objets JSON, vous verrez la structure imbriquée JSON plus tard.

Le problème est que l'API renvoie une structure JSON imbriquée, et les clés qui nous intéressent se trouvent effectivement à différents niveaux dans l'objet. La structure

imbriquée JSON ressemble à ceci.

Ce que nous voulons, c'est quelque chose comme ça.

Ce qui suit prend comme exemple les données renvoyées par une API. Les API contiennent généralement des métadonnées sur les champs associés. Disons que ce sont les domaines que nous voulons.

  • clé : clé JSON, au premier niveau.
  • résumé : L'objet "champ" de deuxième niveau.
  • nom du statut : Poste de troisième niveau.
  • statutNom de la catégorie : Situé au 4ème niveau de nidification.

Comme ci-dessus, les champs que nous choisissons d'extraire se trouvent à 4 niveaux d'imbrication différents dans la structure JSON de la liste des tickets, l'un après l'autre.

{
  "expand": "schema,names",
  "issues": [
    {
      "fields": {
        "issuetype": {
          "avatarId": 10300,
          "description": "",
          "id": "10005",
          "name": "New Feature",
          "subtask": False
        },
        "status": {
          "description": "A resolution has been taken, and it is awaiting verification by reporter. From here issues are either reopened, or are closed.",
          "id": "5",
          "name": "Resolved",
          "statusCategory": {
            "colorName": "green",
            "id": 3,
            "key": "done",
            "name": "Done",
          }
        },
        "summary": "Recovered data collection Defraglar $MFT problem"
      },
      "id": "11861",
      "key": "CAE-160",
    },
    {
      "fields": { 
... more issues],
  "maxResults": 5,
  "startAt": 0,
  "total": 160
}
Copier après la connexion

Une solution pas si bonne

Une option consiste à coder directement et à écrire une fonction qui trouve un champ spécifique, mais le problème est que chaque intégration doit be Appelez cette fonction pour définir les champs, puis appelez .apply à la nouvelle colonne dans DataFrame.

Afin d'obtenir les différents champs souhaités, nous extrayons d'abord les objets dans les champs en colonnes :

df = (
    df["fields"]
    .apply(pd.Series)
    .merge(df, left_index=True, right_index = True)
)
Copier après la connexion

Comme le montre le tableau ci-dessus, seul un résumé est disponible, type de problème , statut, etc. Toujours enfoui dans des objets imbriqués.

Ce qui suit est une méthode pour extraire le nom dans issuetype.

# 提取issue type的name到一个新列叫"issue_type"
df_issue_type = (
    df["issuetype"]
    .apply(pd.Series)
    .rename(columns={"name": "issue_type_name"})["issue_type_name"]
)
df = df.assign(issue_type_name = df_issue_type)
Copier après la connexion

Comme ci-dessus, s'il y a trop de niveaux d'imbrication, vous devez implémenter la récursivité vous-même, car chaque niveau d'imbrication doit appeler une méthode comme celle ci-dessus pour analyser et ajouter à une nouvelle colonne.

Pour les amis ayant des bases de programmation faibles, il est en fait assez difficile d'en choisir une, en particulier pour les analystes de données, lorsqu'ils sont impatients d'utiliser des données, ils espèrent obtenir rapidement des données structurées à analyser.

Frère Dong partagera ci-dessous une pandas solution intégrée.

Solution intégrée

pandas a une fonction intégrée géniale appelée .json_normalize. La documentation de

pandas mentionne : Normaliser les données JSON semi-structurées dans un tableau plat.

Tout le code de la solution précédente peut être complété à l'aide de cette fonction intégrée en seulement 3 lignes. Les étapes sont très simples, il suffit de comprendre l'utilisation suivante.

Déterminez les champs souhaités et utilisez le symbole .

Mettez la liste imbriquée que vous souhaitez traiter (ici results["issues"]) comme paramètre dans .json_normalize.

Filtrer la liste des CHAMPS que nous avons définis.

FIELDS = ["key", "fields.summary", "fields.issuetype.name", "fields.status.name", "fields.status.statusCategory.name"]
df = pd.json_normalize(results["issues"])
df[FIELDS]
Copier après la connexion

Oui, c'est aussi simple que cela.

Autres opérations

Chemin d'enregistrement

En plus de passer la liste results["issues"] comme ci-dessus, nous utilisons également spécifie le chemin d'accès à la liste dans l'objet record_path. JSON

# 使用路径而不是直接用results["issues"]
pd.json_normalize(results, record_path="issues")[FIELDS]
Copier après la connexion

Délimiteur personnalisé

Vous pouvez également utiliser le paramètre sep pour personnaliser le délimiteur pour les connexions de structure imbriquées, par exemple, remplacer le "." par défaut par "-" ci-dessous .

### 用 "-" 替换默认的 "."
FIELDS = ["key", "fields-summary", "fields-issuetype-name", "fields-status-name", "fields-status-statusCategory-name"]
pd.json_normalize(results["issues"], sep = "-")[FIELDS]
Copier après la connexion

Contrôler la récursion

Si vous ne souhaitez pas faire de récursion sur chaque objet enfant, vous pouvez utiliser le paramètre

pour contrôler la profondeur. Dans ce cas, puisque le champ max_level est au niveau 4 de l'objet statusCategory.name, il ne sera pas inclus dans le JSON résultant. DataFrame

# 只深入到嵌套第二级
pd.json_normalize(results, record_path="issues", max_level = 2)
Copier après la connexion
Ce qui suit est la description officielle du document

de .json_normalize Si vous ne comprenez pas, vous pouvez l'apprendre par vous-même. Cette fois, frère Dong le présentera ici. pandas

Documentation officielle des pandas : https://pandas.pydata.org/pan...

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: exemples de code et comparaison PHP et Python: exemples de code et comparaison Apr 15, 2025 am 12:07 AM

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Python vs JavaScript: communauté, bibliothèques et ressources Python vs JavaScript: communauté, bibliothèques et ressources Apr 15, 2025 am 12:16 AM

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Explication détaillée du principe docker Explication détaillée du principe docker Apr 14, 2025 pm 11:57 PM

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Comment exécuter des programmes dans Terminal Vscode Comment exécuter des programmes dans Terminal Vscode Apr 15, 2025 pm 06:42 PM

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

L'extension VScode est-elle malveillante? L'extension VScode est-elle malveillante? Apr 15, 2025 pm 07:57 PM

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

Comment installer nginx dans Centos Comment installer nginx dans Centos Apr 14, 2025 pm 08:06 PM

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.

Qu'est-ce que VScode pour quoi est VScode? Qu'est-ce que VScode pour quoi est VScode? Apr 15, 2025 pm 06:45 PM

VS Code est le code Visual Studio Nom complet, qui est un éditeur de code multiplateforme gratuit et open source et un environnement de développement développé par Microsoft. Il prend en charge un large éventail de langages de programmation et fournit une mise en surbrillance de syntaxe, une complétion automatique du code, des extraits de code et des invites intelligentes pour améliorer l'efficacité de développement. Grâce à un écosystème d'extension riche, les utilisateurs peuvent ajouter des extensions à des besoins et des langues spécifiques, tels que les débogueurs, les outils de mise en forme de code et les intégrations GIT. VS Code comprend également un débogueur intuitif qui aide à trouver et à résoudre rapidement les bogues dans votre code.

See all articles