


Comment node.js « multi-threading » gère-t-il les tâches à haute concurrence ?
L'article suivant vous présentera comment utiliser nodejs "multi-threading" pour gérer des tâches à haute concurrence. Il a une certaine valeur de référence. Les amis dans le besoin peuvent s'y référer. J'espère qu'il sera utile à tout le monde.
Recommandations associées : "Tutoriel vidéo nodejs"
Loi de Moore
Moore La loi a été proposée par le cofondateur d'Intel, Gordon Moore, en 1965, c'est-à-dire que le nombre de composants pouvant être hébergés sur un circuit intégré doublera tous les 18 à 24 mois et que les performances augmenteront également d'une fois. Autrement dit, les performances du processeur (CPU) doublent tous les deux ans environ.
Plus de 50 ans se sont écoulés depuis que la loi de Moore a été proposée. Aujourd'hui, à mesure que les composants des puces se rapprochent de l'échelle d'un seul atome, il devient de plus en plus difficile de respecter la loi de Moore.
En 2019, Jensen Huang, PDG de NVIDIA, a déclaré lors du salon ECS : "La loi de Moore augmentait de 10 fois tous les 5 ans et de 100 fois tous les 10 ans. Mais aujourd'hui, la loi de Moore ne peut croître que de quelques points de pourcentage. chaque année. , peut-être seulement 2 fois tous les 10 ans. Par conséquent, la loi de Moore est terminée "
Les performances d'un seul processeur (CPU) se rapprochent de plus en plus du goulot d'étranglement. Si vous voulez percer. ce goulot d'étranglement, vous devez en tirer pleinement parti, permettant à un ou plusieurs 多线程技术
d'exécuter plusieurs threads en même temps pour effectuer les tâches informatiques plus rapidement. CPU
Multi-threading de Node
Nous savons tous que est un langage monothread Javascript
profite des fonctionnalités de Nodejs
et utilise. le modèle basé sur les événements pour réaliser des E/S asynchrones, et derrière les E/S asynchrones se trouve la planification multithread. Javascript
Pour l'implémentation des E/S asynchrones, vous pouvez vous référer au "Node.js en termes simples" de Pu Ling Node
Dans le langage , vous pouvez appeler explicitement un programme en créant Go
Nouveaux threads, et contrôlez le nombre maximum de concurrences via des variables d'environnement Goroutine
. GOMAXPROCS
, il n'y a pas de Node
qui peut explicitement créer un nouveau thread API
implémente certaines API d'E/S asynchrones, telles que Node
, fs.readFile
. La couche inférieure de ces E/S asynchrones consiste à appeler de nouveaux threads pour effectuer des tâches asynchrones, puis à utiliser le modèle basé sur les événements pour obtenir les résultats d'exécution. http.request
épuisement, des erreurs réseau causées par une bande passante insuffisante, des erreurs causées par des restrictions de port, etc. peuvent survenir. 文件描述符
ou de variable d'environnement utilisée pour contrôler le nombre maximum de simultanéités dans Node
, donc ensuite, nous utiliserons quelques lignes de code simples pour l'implémenter. API
Implémentation du code
Supposons d'abord le scénario de demande suivant. J'ai un robot qui doit explorer 100 articles Nugget chaque jour. L'exploration est trop lente. . L'exploration de 100 articles à la fois entraînera l'échec direct de nombreuses requêtes en raison d'un trop grand nombre de connexions réseau. Ensuite, nous pouvons le mettre en œuvre, en demandant 10 articles à chaque fois et en le complétant en 10 fois. Cela peut non seulement augmenter l'efficacité de 10 fois, mais également garantir un fonctionnement stable. Jetons un coup d'œil à une seule tâche de requête. Le code est implémenté comme suit :const axios = require("axios"); async function singleRequest(article_id) { // 这里我们直接使用 axios 库进行请求 const reply = await axios.post( "https://api.juejin.cn/content_api/v1/article/detail", { article_id, } ); return reply.data; }
// 请求任务列表 const requestFnList = new Array(100) .fill("6909002738705629198") .map((id) => () => singleRequest(id));
const chalk = require("chalk"); const { log } = require("console"); /** * 执行多个异步任务 * @param {*} fnList 任务列表 * @param {*} max 最大并发数限制 * @param {*} taskName 任务名称 */ async function concurrentRun(fnList = [], max = 5, taskName = "未命名") { if (!fnList.length) return; log(chalk.blue(`开始执行多个异步任务,最大并发数: ${max}`)); const replyList = []; // 收集任务执行结果 const count = fnList.length; // 总任务数量 const startTime = new Date().getTime(); // 记录任务执行开始时间 let current = 0; // 任务执行程序 const schedule = async (index) => { return new Promise(async (resolve) => { const fn = fnList[index]; if (!fn) return resolve(); // 执行当前异步任务 const reply = await fn(); replyList[index] = reply; log(`${taskName} 事务进度 ${((++current / count) * 100).toFixed(2)}% `); // 执行完当前任务后,继续执行任务池的剩余任务 await schedule(index + max); resolve(); }); }; // 任务池执行程序 const scheduleList = new Array(max) .fill(0) .map((_, index) => schedule(index)); // 使用 Promise.all 批量执行 const r = await Promise.all(scheduleList); const cost = (new Date().getTime() - startTime) / 1000; log(chalk.green(`执行完成,最大并发数: ${max},耗时:${cost}s`)); return replyList; }
pour les requêtes simultanées est Node
, et Promise.all
peut exécuter plusieurs tâches asynchrones en même temps. temps. Promise.all
le nombre maximum de tâches simultanées est créé et le nombre correspondant de tâches asynchrones est placé dans le tableau. Utilisez ensuite max
pour exécuter ces tâches asynchrones en même temps. Lorsqu'une seule tâche asynchrone est terminée, une nouvelle tâche asynchrone sera retirée du pool de tâches pour poursuivre l'exécution, maximisant ainsi l'efficacité. Promise.all
(async () => { const requestFnList = new Array(100) .fill("6909002738705629198") .map((id) => () => singleRequest(id)); const reply = await concurrentRun(requestFnList, 10, "请求掘金文章"); })();
À ce stade, notre demande concurrente est complétée ! Testons ensuite la vitesse de différentes simultanéités ~ La première est 1 simultanéité, c'est-à-dire aucune simultanéité (comme indiqué ci-dessous)
Cela prend 11,462 secondes ! Lorsque la simultanéité n'est pas utilisée, la tâche prend très longtemps. Voyons ensuite combien de temps cela prend dans d'autres conditions de simultanéité (comme indiqué ci-dessous)
<.>
n'ouvre pas réellement un thread pour chaque tâche à traiter, mais ouvre uniquement un nouveau thread pour les tâches Node
asynchrones. Par conséquent, I/O
est plus adapté au traitement de Node
tâches intensives, mais ne convient pas aux tâches I/O
(de calcul) intensives. CPU
Introduction à la programmation ! !
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

La gestion des exceptions de fonction en C++ est particulièrement importante pour les environnements multithread afin de garantir la sécurité des threads et l’intégrité des données. L'instruction try-catch vous permet d'intercepter et de gérer des types spécifiques d'exceptions lorsqu'elles se produisent afin d'éviter les plantages du programme ou la corruption des données.

Il existe deux approches courantes lors de l'utilisation de JUnit dans un environnement multithread : les tests monothread et les tests multithread. Les tests monothread s'exécutent sur le thread principal pour éviter les problèmes de concurrence, tandis que les tests multithread s'exécutent sur les threads de travail et nécessitent une approche de test synchronisée pour garantir que les ressources partagées ne sont pas perturbées. Les cas d'utilisation courants incluent le test de méthodes multi-thread-safe, telles que l'utilisation de ConcurrentHashMap pour stocker des paires clé-valeur, et des threads simultanés pour opérer sur les paires clé-valeur et vérifier leur exactitude, reflétant l'application de JUnit dans un environnement multi-thread. .

Les techniques de concurrence et de multithreading utilisant les fonctions Java peuvent améliorer les performances des applications, notamment en suivant les étapes suivantes : Comprendre les concepts de concurrence et de multithreading. Tirez parti des bibliothèques de concurrence et multithread de Java telles que ExecutorService et Callable. Pratiquez des cas tels que la multiplication matricielle multithread pour réduire considérablement le temps d'exécution. Profitez des avantages d’une vitesse de réponse accrue des applications et d’une efficacité de traitement optimisée grâce à la concurrence et au multithreading.

Le multithreading PHP fait référence à l'exécution simultanée de plusieurs tâches dans un seul processus, ce qui est réalisé en créant des threads exécutés indépendamment. Vous pouvez utiliser l'extension Pthreads en PHP pour simuler le comportement multi-threading. Après l'installation, vous pouvez utiliser la classe Thread pour créer et démarrer des threads. Par exemple, lors du traitement d'une grande quantité de données, les données peuvent être divisées en plusieurs blocs et un nombre correspondant de threads peut être créé pour un traitement simultané afin d'améliorer l'efficacité.

Dans un environnement multi-thread, le comportement des fonctions PHP dépend de leur type : Fonctions normales : thread-safe, peuvent être exécutées simultanément. Fonctions qui modifient les variables globales : dangereuses, doivent utiliser un mécanisme de synchronisation. Fonction d'opération de fichier : dangereuse, nécessité d'utiliser un mécanisme de synchronisation pour coordonner l'accès. Fonction d'exploitation de la base de données : dangereux, le mécanisme du système de base de données doit être utilisé pour éviter les conflits.

Les mutex sont utilisés en C++ pour gérer des ressources partagées multithread : créez des mutex via std::mutex. Utilisez mtx.lock() pour obtenir un mutex et fournir un accès exclusif aux ressources partagées. Utilisez mtx.unlock() pour libérer le mutex.

Les tests de programmes multithread sont confrontés à des défis tels que la non-répétabilité, les erreurs de concurrence, les blocages et le manque de visibilité. Les stratégies incluent : Tests unitaires : écrivez des tests unitaires pour chaque thread afin de vérifier le comportement du thread. Simulation multithread : utilisez un framework de simulation pour tester votre programme en contrôlant la planification des threads. Détection de courses aux données : utilisez des outils pour trouver des courses aux données potentielles, tels que valgrind. Débogage : utilisez un débogueur (tel que gdb) pour examiner l'état du programme d'exécution et trouver la source de la course aux données.

Dans un environnement multithread, la gestion de la mémoire C++ est confrontée aux défis suivants : courses de données, blocages et fuites de mémoire. Les contre-mesures incluent : 1. L'utilisation de mécanismes de synchronisation, tels que les mutex et les variables atomiques ; 2. L'utilisation de structures de données sans verrouillage ; 3. L'utilisation de pointeurs intelligents ; 4. (Facultatif) La mise en œuvre du garbage collection ;
