


Présentation des fonctions de dessin courantes de matplotlib de Python
Recommandation d'apprentissage gratuite : tutoriel vidéo Python
matplotlib a de puissantes fonctions de dessin, mais les phrases sont triviales et il serait trop compliqué de les écrire phrase par phrase à chaque fois qu'elles sont utilisées. Cet article résume les fonctions de dessin courantes basées sur l'expérience de dessin quotidienne, qui peuvent être utilisées directement et sont très pratiques
import matplotlib.pyplot as pltimport pandas as pdimport numpy as np plt.rcParams['font.sans-serif']=['simhei']#用于正常显示中文标签plt.rcParams['axes.unicode_minus']=False#用于正常显示负号
1 Utilisez le dessin de table DataFrame avec plusieurs colonnes de données
def plot_cols(data,xlabel=None,ylabel=None,path_file=None,marker=True,len_xticks=10,save=False): """ :param data:DataFrame,数据表格--行标题为横坐标,列标题为数据列 Series,序列——行标题为横坐标,name为数据列 :param xlabel: str,横坐标名称 :param ylabel: str,纵坐标名称 :param path_file: str,保存文件路径 :param marker: bool,是否为每条线添加不同的标记 :param len_xticks:int,横坐标显示的值个数 :param save: bool,是否保存图片 example: data=pd.DataFrame(np.random.random((100,3)),index=np.arange(100),columns=['a','b','c']) plot_cols(data,xlabel='指标',ylabel='指数') """ data.index=data.index.astype(str) plt.figure(figsize=(12,8)) markers=['.',',','o','v','^','','1','2','3','4','s','p','*','h','H','+','x','D','d','|','_']#标记符号 #如果是DataFrame表格形式,则画出多列;如果是Series,则画出单列 if type(data) is pd.core.frame.DataFrame: #是否为每条线添加不同的符号 if marker==False: for col in data.columns: plt.plot(data[col],marker='o',label=col) else: for col,marker_ in zip(data.columns,markers): plt.plot(data[col], marker=marker_, label=col) elif type(data) is pd.core.series.Series: plt.plot(data, marker='o', label=data.name) plt.legend(loc='best',fontsize='small') xticks=np.linspace(0,len(data),(len_xticks+1)).astype(int).tolist()[:-1]#被显示的横坐标刻度值的位置 plt.xticks(data.index[xticks],rotation=270) plt.ylabel(ylabel,fontsize=15) plt.xlabel(xlabel,fontsize=15) plt.grid(True,alpha=0.2) if save==True:plt.savefig(path_file)if __name__=='__main__': x=np.arange(1,101) data = pd.DataFrame({'a':x*2+3,'b':x*3-4,'c':np.log(x)+9}, index=np.arange(100)) plot_cols(data, xlabel='指标', ylabel='指数')
2. Convertissez les données du tableau DataFrame contenant deux colonnes en un graphique à deux axes
def plot_twins(data,col1,col2,xlabel=None,ylabel1=None,ylabel2=None,len_xticks=10,figsize=(10,6),save_path=None): """将含有两列的DataFrame表格数据作为双轴图 :param data: DataFrame,含有两列的DataFrame表格数据 :param col1: str,左图列标题 :param col2: str,右图列标题 :param xlabel: str,横轴标题 :param ylabel1: str,左y轴标题 :param ylabel2: str,右y轴标题 :param len_xticks: int,显示的刻度个数 :param figsize: turple,图大小 :param save_path: str,图片保存路径。默认为None,不保存图片 :return: example: x=np.arange(0,100) data=pd.DataFrame({'销售额(元)':3*x+np.random.random(100)*100,'增长率(%)':np.random.random(100)},index=pd.date_range('2015-01-23',periods=100,freq='D')) plot_twins(data,col1='销售额(元)',col2='增长率(%)',xlabel=None,ylabel1='销售额(元)',ylabel2='增长率(%)') """ fig=plt.figure(figsize=figsize)#创建一块总画布 # 将画板分为四行四列共16个单元格,(0, 0)表示从第一行第一列即第一个单元格开始画图,将第一行的三个单元格作为一个画块作画 ax=plt.subplot2grid((1,1),(0,0),rowspan=1,colspan=1) plt.plot(data[col1],label=col1,color='r',marker='^') ax.legend(loc='upper right')#用于显示画布ax的图,切记用 loc= 表示位置 ax.set_ylabel(ylabel1) xticks=np.linspace(0,len(data),(len_xticks+1)).astype(int).tolist()[:-1]#被显示的横坐标刻度值的位置 ax.set_xticks(data.index[xticks]) plt.xticks(rotation=270) twin=ax.twinx() plt.plot(data[col2],label=col2,color='y',marker='o') twin.legend(loc='upper left') twin.set_ylabel(ylabel2) ax.set_xlabel(xlabel) ax.grid(True,alpha=0.2) if save_path!=None: plt.savefig(save_path)if __name__=='__main__': x=np.arange(0,100) data=pd.DataFrame({'销售额(元)':3*x+np.random.random(100)*100,'增长率(%)':np.random.random(100)},index=pd.date_range('2015-01-23',periods=100,freq='D')) plot_twins(data,col1='销售额(元)',col2='增长率(%)',xlabel=None,ylabel1='销售额(元)',ylabel2='增长率(%)')
3. Convertir le DataFrame Plusieurs colonnes de données du tableau sont dessinées en plusieurs graphiques
def plot_figs(data,xlabel=None,ylabels=None,save_path=None,len_xticks=5,length=10,width=3,intervals=1): """ 将DataFrame表格中的多列数据绘制成多个图 :param data:DataFrame,含有多列的表格 :param xlabel:str,横轴标题 :param ylabels:list,各个图的纵轴标题 :param path_save:str,图片保存路径。默认为None,不保存图片 :param len_xticks: int,显示的刻度个数 :param length:int,画板长度 :param width:int,图画宽度 :param intervals:int,图画之间间隔距离 :return: example: data=pd.DataFrame(np.random.random((100,3)),index=np.arange(100),columns=['a','b','c']) plot_figs(data,xlabel='标号',ylabels=['a','b','c']) """ cols=data.columns num_fig = len(data.columns) fig = plt.figure(figsize=(length, 4*num_fig)) # 创建一块总画布 for i in range(0,num_fig): #i=2 ax = plt.subplot2grid((num_fig*(width+intervals), 1), (i*(width+intervals), 0), rowspan=width, colspan=1) # 将画板分为四行四列共16个单元格,(0, 0)表示从第一行第一列即第一个单元格开始画图,将第一行的三个单元格作为一个画块作画 ax.plot(data[cols[i]], label=cols[i]) ax.legend(loc='upper right') # 用于显示画布ax1的图,切记用 loc= 表示位置 if ylabels!=None:ax.set_ylabel(ylabels[i]) if xlabels!=None and i==(num_fig-1):ax.set_xlabel(xlabel) xticks = np.linspace(0, len(data), (len_xticks + 1)).astype(int).tolist()[:-1] # 被显示的横坐标刻度值的位置 ax.set_xticks(data.index[xticks]) plt.grid(True,alpha=0.2) if save_path != None: plt.savefig(save_path)if __name__=='__main__': data=pd.DataFrame(np.random.random((100,3)),index=np.arange(100),columns=['a','b','c']) plot_figs(data,xlabel='标号',ylabels=['a','b','c'])
Recommandations d'apprentissage gratuites associées : tutoriel python(vidéo)
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

VS Code peut être utilisé pour écrire Python et fournit de nombreuses fonctionnalités qui en font un outil idéal pour développer des applications Python. Il permet aux utilisateurs de: installer des extensions Python pour obtenir des fonctions telles que la réalisation du code, la mise en évidence de la syntaxe et le débogage. Utilisez le débogueur pour suivre le code étape par étape, trouver et corriger les erreurs. Intégrez Git pour le contrôle de version. Utilisez des outils de mise en forme de code pour maintenir la cohérence du code. Utilisez l'outil de liaison pour repérer les problèmes potentiels à l'avance.

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

VS Code peut fonctionner sur Windows 8, mais l'expérience peut ne pas être excellente. Assurez-vous d'abord que le système a été mis à jour sur le dernier correctif, puis téléchargez le package d'installation VS Code qui correspond à l'architecture du système et l'installez comme invité. Après l'installation, sachez que certaines extensions peuvent être incompatibles avec Windows 8 et doivent rechercher des extensions alternatives ou utiliser de nouveaux systèmes Windows dans une machine virtuelle. Installez les extensions nécessaires pour vérifier si elles fonctionnent correctement. Bien que le code VS soit possible sur Windows 8, il est recommandé de passer à un système Windows plus récent pour une meilleure expérience de développement et une meilleure sécurité.

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.
