Maison Problème commun Quels sont les trois composants majeurs de Hadoop

Quels sont les trois composants majeurs de Hadoop

Mar 24, 2021 am 11:04 AM
hadoop

Hadoop comprend trois composants principaux : 1. HDFS, un système de fichiers distribué hautement fiable et à haut débit ; 2. MapReduce, un cadre de calcul parallèle hors ligne distribué ; 3. Yarn, un cadre de gestion des ressources distribuées.

Quels sont les trois composants majeurs de Hadoop

L'environnement d'exploitation de cet article : système Windows 7, ordinateur Dell G3.

Trois composants majeurs de hadoop :

1 HDFS

Un système de fichiers distribué hautement fiable et à haut débit <.>

Stockage de données massives

Distribué

Sécurité

Copier les données

Les données sont stockées en blocs, 128M

Pour exemple : 200M—128M 72M

2. MapReduce

Un cadre informatique parallèle hors ligne distribué

pour le traitement massif de données

Distribué

Idéologie :

Diviser pour conquérir

Un grand ensemble de données est divisé en petits ensembles de données

Chaque ensemble de données Effectuer un traitement métier logique (carte)

Fusionner les résultats des données statistiques (réduire)

3. Yarn

Cadre de gestion des ressources distribuées

Gérer les ressources de l'ensemble du cluster ( mémoire, cœurs CPU)

Allocation et planification des ressources du cluster

Recommandations vidéo associées :

Programmation PHP de l'entrée à la maîtrise

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Erreurs Java : erreurs Hadoop, comment les gérer et les éviter Erreurs Java : erreurs Hadoop, comment les gérer et les éviter Jun 24, 2023 pm 01:06 PM

Erreurs Java : erreurs Hadoop, comment les gérer et les éviter Lorsque vous utilisez Hadoop pour traiter des données volumineuses, vous rencontrez souvent des erreurs d'exception Java, qui peuvent affecter l'exécution des tâches et provoquer l'échec du traitement des données. Cet article présentera quelques erreurs Hadoop courantes et fournira des moyens de les gérer et de les éviter. Java.lang.OutOfMemoryErrorOutOfMemoryError est une erreur provoquée par une mémoire insuffisante de la machine virtuelle Java. Quand Hadoop est

Utilisation de Hadoop et HBase dans Beego pour le stockage et les requêtes Big Data Utilisation de Hadoop et HBase dans Beego pour le stockage et les requêtes Big Data Jun 22, 2023 am 10:21 AM

Avec l'avènement de l'ère du Big Data, le traitement et le stockage des données sont devenus de plus en plus importants, et la gestion et l'analyse efficaces de grandes quantités de données sont devenues un défi pour les entreprises. Hadoop et HBase, deux projets de la Fondation Apache, proposent une solution de stockage et d'analyse du Big Data. Cet article explique comment utiliser Hadoop et HBase dans Beego pour le stockage et les requêtes Big Data. 1. Introduction à Hadoop et HBase Hadoop est un système informatique et de stockage distribué open source qui peut

Comment utiliser PHP et Hadoop pour le traitement du Big Data Comment utiliser PHP et Hadoop pour le traitement du Big Data Jun 19, 2023 pm 02:24 PM

Alors que la quantité de données continue d’augmenter, les méthodes traditionnelles de traitement des données ne peuvent plus relever les défis posés par l’ère du Big Data. Hadoop est un cadre informatique distribué open source qui résout le problème de goulot d'étranglement des performances causé par les serveurs à nœud unique dans le traitement du Big Data grâce au stockage distribué et au traitement de grandes quantités de données. PHP est un langage de script largement utilisé dans le développement Web et présente les avantages d'un développement rapide et d'une maintenance facile. Cet article explique comment utiliser PHP et Hadoop pour le traitement du Big Data. Qu'est-ce que HadoopHadoop ?

Explorez l'application de Java dans le domaine du big data : compréhension de Hadoop, Spark, Kafka et d'autres piles technologiques Explorez l'application de Java dans le domaine du big data : compréhension de Hadoop, Spark, Kafka et d'autres piles technologiques Dec 26, 2023 pm 02:57 PM

Pile technologique Java Big Data : Comprendre l'application de Java dans le domaine du Big Data, comme Hadoop, Spark, Kafka, etc. Alors que la quantité de données continue d'augmenter, la technologie Big Data est devenue un sujet brûlant à l'ère d'Internet d'aujourd'hui. Dans le domaine du big data, on entend souvent les noms de Hadoop, Spark, Kafka et d’autres technologies. Ces technologies jouent un rôle essentiel et Java, en tant que langage de programmation largement utilisé, joue également un rôle majeur dans le domaine du Big Data. Cet article se concentrera sur l'application de Java en général

Comment installer Hadoop sous Linux Comment installer Hadoop sous Linux May 18, 2023 pm 08:19 PM

1 : Installez JDK1. Exécutez la commande suivante pour télécharger le package d'installation de JDK1.8. wget--no-check-certificatehttps://repo.huaweicloud.com/java/jdk/8u151-b12/jdk-8u151-linux-x64.tar.gz2 Exécutez la commande suivante pour décompresser le package d'installation JDK1.8 téléchargé. . tar-zxvfjdk-8u151-linux-x64.tar.gz3 Déplacez et renommez le package JDK. mvjdk1.8.0_151//usr/java84. Configurez les variables d'environnement Java. écho'

Utiliser PHP pour réaliser des traitements de données à grande échelle : Hadoop, Spark, Flink, etc. Utiliser PHP pour réaliser des traitements de données à grande échelle : Hadoop, Spark, Flink, etc. May 11, 2023 pm 04:13 PM

Alors que la quantité de données continue d’augmenter, le traitement des données à grande échelle est devenu un problème auquel les entreprises doivent faire face et résoudre. Les bases de données relationnelles traditionnelles ne peuvent plus répondre à cette demande pour le stockage et l'analyse de données à grande échelle, les plateformes informatiques distribuées telles que Hadoop, Spark et Flink sont devenues les meilleurs choix. Dans le processus de sélection des outils de traitement de données, PHP devient de plus en plus populaire parmi les développeurs en tant que langage facile à développer et à maintenir. Dans cet article, nous explorerons comment exploiter PHP pour le traitement de données à grande échelle et comment

Moteurs de traitement de données en PHP (Spark, Hadoop, etc.) Moteurs de traitement de données en PHP (Spark, Hadoop, etc.) Jun 23, 2023 am 09:43 AM

À l’ère actuelle d’Internet, le traitement de données massives est un problème auquel chaque entreprise et institution doit faire face. En tant que langage de programmation largement utilisé, PHP doit également suivre l’évolution du traitement des données. Afin de traiter plus efficacement des données massives, le développement PHP a introduit des outils de traitement du Big Data, tels que Spark et Hadoop. Spark est un moteur de traitement de données open source qui peut être utilisé pour le traitement distribué de grands ensembles de données. La plus grande caractéristique de Spark est sa vitesse de traitement rapide des données et son stockage efficace.

Comparaison et scénarios d'application de Redis et Hadoop Comparaison et scénarios d'application de Redis et Hadoop Jun 21, 2023 am 08:28 AM

Redis et Hadoop sont tous deux des systèmes de stockage et de traitement de données distribués couramment utilisés. Cependant, il existe des différences évidentes entre les deux en termes de conception, de performances, de scénarios d'utilisation, etc. Dans cet article, nous comparerons en détail les différences entre Redis et Hadoop et explorerons leurs scénarios applicables. Présentation de Redis Redis est un système de stockage de données open source basé sur la mémoire qui prend en charge plusieurs structures de données et des opérations de lecture et d'écriture efficaces. Les principales fonctionnalités de Redis incluent : Stockage mémoire : Redis