L'algorithme diff est un algorithme efficace qui compare les nœuds d'arbre au même niveau, évitant ainsi d'avoir à rechercher et parcourir l'arbre couche par couche. Alors, que savez-vous de l’algorithme diff ? L'article suivant vous donnera une analyse approfondie de l'algorithme diff de vue J'espère qu'il vous sera utile !
L'algorithme diff
est un algorithme efficace qui compare les nœuds d'arbres au même niveau. (Partage de vidéos d'apprentissage : vue vidéo tutorieldiff
算法是一种通过同层的树节点进行比较的高效算法。(学习视频分享:vue视频教程)
其有两个特点:
diff
算法在很多场景下都有应用,在 vue
中,作用于虚拟 dom
渲染成真实 dom
的新旧 VNode
节点比较
diff
整体策略为:深度优先,同层比较
比较只会在同层级进行, 不会跨层级比较
比较的过程中,循环从两边向中间收拢
下面举个vue
通过diff
算法更新的例子:
新旧VNode
节点如下图所示:
第一次循环后,发现旧节点D与新节点D相同,直接复用旧节点D作为diff
后的第一个真实节点,同时旧节点endIndex
移动到C,新节点的 startIndex
移动到了 C
第二次循环后,同样是旧节点的末尾和新节点的开头(都是 C)相同,同理,diff
后创建了 C 的真实节点插入到第一次创建的 D 节点后面。同时旧节点的 endIndex
移动到了 B,新节点的 startIndex
移动到了 E
第三次循环中,发现E没有找到,这时候只能直接创建新的真实节点 E,插入到第二次创建的 C 节点之后。同时新节点的 startIndex
移动到了 A。旧节点的 startIndex
和 endIndex
都保持不动
第四次循环中,发现了新旧节点的开头(都是 A)相同,于是 diff
后创建了 A 的真实节点,插入到前一次创建的 E 节点后面。同时旧节点的 startIndex
移动到了 B,新节点的startIndex
移动到了 B
第五次循环中,情形同第四次循环一样,因此 diff
后创建了 B 真实节点 插入到前一次创建的 A 节点后面。同时旧节点的 startIndex
移动到了 C,新节点的 startIndex 移动到了 F
新节点的 startIndex
已经大于 endIndex
了,需要创建 newStartIdx
和 newEndIdx
之间的所有节点,也就是节点F,直接创建 F 节点对应的真实节点放到 B 节点后面
当数据发生改变时,set
方法会调用Dep.notify
通知所有订阅者Watcher
,订阅者就会调用patch
给真实的DOM
打补丁,更新相应的视图
源码位置:src/core/vdom/patch.js
function patch(oldVnode, vnode, hydrating, removeOnly) { if (isUndef(vnode)) { // 没有新节点,直接执行destory钩子函数 if (isDef(oldVnode)) invokeDestroyHook(oldVnode) return } let isInitialPatch = false const insertedVnodeQueue = [] if (isUndef(oldVnode)) { isInitialPatch = true createElm(vnode, insertedVnodeQueue) // 没有旧节点,直接用新节点生成dom元素 } else { const isRealElement = isDef(oldVnode.nodeType) if (!isRealElement && sameVnode(oldVnode, vnode)) { // 判断旧节点和新节点自身一样,一致执行patchVnode patchVnode(oldVnode, vnode, insertedVnodeQueue, null, null, removeOnly) } else { // 否则直接销毁及旧节点,根据新节点生成dom元素 if (isRealElement) { if (oldVnode.nodeType === 1 && oldVnode.hasAttribute(SSR_ATTR)) { oldVnode.removeAttribute(SSR_ATTR) hydrating = true } if (isTrue(hydrating)) { if (hydrate(oldVnode, vnode, insertedVnodeQueue)) { invokeInsertHook(vnode, insertedVnodeQueue, true) return oldVnode } } oldVnode = emptyNodeAt(oldVnode) } return vnode.elm } } }
patch
函数前两个参数位为oldVnode
和 Vnode
)
diff
est utilisé dans de nombreux scénarios. Dans vue
, il agit sur le dom
virtuel et le rend en vrai dom< Comparaison des anciens et nouveaux nœuds <code>VNode
dans /code>🎜vue
passant l'algorithme diff
Exemple mis à jour : 🎜🎜Les anciens et nouveaux nœuds VNode
sont comme indiqué ci-dessous : 🎜🎜🎜🎜Après le premier cycle, il on constate que l'ancien nœud D est le même que le nouveau nœud D, et l'ancien nœud D est directement réutilisé comme diff</code >, l'ancien nœud <code>endIndex
est déplacé vers C, et le startIndex
du nouveau nœud est déplacé vers C🎜🎜🎜🎜Après le deuxième cycle, c'est aussi la fin de l'ancien nœud et les débuts des nouveaux nœuds (tous C) sont les mêmes. De même, le vrai nœud C créé après que diff
soit inséré derrière le nœud D créé pour la première fois. Dans le même temps, le endIndex
de l'ancien nœud a été déplacé vers B, et le startIndex
du nouveau nœud a été déplacé vers E🎜🎜🎜🎜Dans la troisième boucle, il a été trouvé que E n'a pas été trouvé, de nouveaux nœuds réels ne peuvent être créés que directement E, insérés après le nœud C créé pour la deuxième fois. En même temps, le startIndex
du nouveau nœud est déplacé vers A. Les startIndex
et endIndex
de l'ancien nœud restent inchangés🎜🎜🎜🎜Dans le quatrième cycle, il a été constaté que les débuts des anciens et des nouveaux nœuds (tous deux A) étaient les mêmes, donc < code>diff Ensuite, le nœud réel de A est créé et inséré derrière le nœud E précédemment créé. Dans le même temps, le startIndex
de l'ancien nœud a été déplacé vers B, et le startIndex
du nouveau nœud a été déplacé vers B🎜🎜🎜🎜Au cinquième cycle, la situation est la même chose que le quatrième cycle, donc diff</ code> Après cela, le nœud réel B est créé et inséré à l'arrière du nœud A précédemment créé. Dans le même temps, le <code>startIndex
de l'ancien nœud a été déplacé vers C, et le startIndex du nouveau nœud a été déplacé vers F🎜🎜🎜🎜Le startIndex
du nouveau nœud est déjà plus grand que endIndex
, et doit être créé. Pour tous les nœuds entre newStartIdx
et newEndIdx
, c'est-à-dire le nœud F, créez directement le nœud réel correspondant au nœud F et placez-le derrière le nœud B🎜🎜🎜set
appellera Dep. notify
pour avertir tous les abonnés Watcher
, et les abonnés appelleront patch
Patch le vrai DOM
et mettront à jour la vue correspondante🎜🎜Source emplacement du code : src/core/vdom/patch.js🎜function patchVnode (oldVnode, vnode, insertedVnodeQueue, removeOnly) { // 如果新旧节点一致,什么都不做 if (oldVnode === vnode) { return } // 让vnode.el引用到现在的真实dom,当el修改时,vnode.el会同步变化 const elm = vnode.elm = oldVnode.elm // 异步占位符 if (isTrue(oldVnode.isAsyncPlaceholder)) { if (isDef(vnode.asyncFactory.resolved)) { hydrate(oldVnode.elm, vnode, insertedVnodeQueue) } else { vnode.isAsyncPlaceholder = true } return } // 如果新旧都是静态节点,并且具有相同的key // 当vnode是克隆节点或是v-once指令控制的节点时,只需要把oldVnode.elm和oldVnode.child都复制到vnode上 // 也不用再有其他操作 if (isTrue(vnode.isStatic) && isTrue(oldVnode.isStatic) && vnode.key === oldVnode.key && (isTrue(vnode.isCloned) || isTrue(vnode.isOnce)) ) { vnode.componentInstance = oldVnode.componentInstance return } let i const data = vnode.data if (isDef(data) && isDef(i = data.hook) && isDef(i = i.prepatch)) { i(oldVnode, vnode) } const oldCh = oldVnode.children const ch = vnode.children if (isDef(data) && isPatchable(vnode)) { for (i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode) if (isDef(i = data.hook) && isDef(i = i.update)) i(oldVnode, vnode) } // 如果vnode不是文本节点或者注释节点 if (isUndef(vnode.text)) { // 并且都有子节点 if (isDef(oldCh) && isDef(ch)) { // 并且子节点不完全一致,则调用updateChildren if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue, removeOnly) // 如果只有新的vnode有子节点 } else if (isDef(ch)) { if (isDef(oldVnode.text)) nodeOps.setTextContent(elm, '') // elm已经引用了老的dom节点,在老的dom节点上添加子节点 addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue) // 如果新vnode没有子节点,而vnode有子节点,直接删除老的oldCh } else if (isDef(oldCh)) { removeVnodes(elm, oldCh, 0, oldCh.length - 1) // 如果老节点是文本节点 } else if (isDef(oldVnode.text)) { nodeOps.setTextContent(elm, '') } // 如果新vnode和老vnode是文本节点或注释节点 // 但是vnode.text != oldVnode.text时,只需要更新vnode.elm的文本内容就可以 } else if (oldVnode.text !== vnode.text) { nodeOps.setTextContent(elm, vnode.text) } if (isDef(data)) { if (isDef(i = data.hook) && isDef(i = i.postpatch)) i(oldVnode, vnode) } }
patch</code >Les deux premiers paramètres de la fonction sont <code>oldVnode
et Vnode
, qui représentent respectivement le nouveau nœud et l'ancien nœud précédent. Il émet principalement quatre jugements : 🎜destory
钩子createElm
sameVnode
判断节点是否一样,一样时,直接调用 patchVnode
去处理这两个节点下面主要讲的是patchVnode
部分
function patchVnode (oldVnode, vnode, insertedVnodeQueue, removeOnly) { // 如果新旧节点一致,什么都不做 if (oldVnode === vnode) { return } // 让vnode.el引用到现在的真实dom,当el修改时,vnode.el会同步变化 const elm = vnode.elm = oldVnode.elm // 异步占位符 if (isTrue(oldVnode.isAsyncPlaceholder)) { if (isDef(vnode.asyncFactory.resolved)) { hydrate(oldVnode.elm, vnode, insertedVnodeQueue) } else { vnode.isAsyncPlaceholder = true } return } // 如果新旧都是静态节点,并且具有相同的key // 当vnode是克隆节点或是v-once指令控制的节点时,只需要把oldVnode.elm和oldVnode.child都复制到vnode上 // 也不用再有其他操作 if (isTrue(vnode.isStatic) && isTrue(oldVnode.isStatic) && vnode.key === oldVnode.key && (isTrue(vnode.isCloned) || isTrue(vnode.isOnce)) ) { vnode.componentInstance = oldVnode.componentInstance return } let i const data = vnode.data if (isDef(data) && isDef(i = data.hook) && isDef(i = i.prepatch)) { i(oldVnode, vnode) } const oldCh = oldVnode.children const ch = vnode.children if (isDef(data) && isPatchable(vnode)) { for (i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode) if (isDef(i = data.hook) && isDef(i = i.update)) i(oldVnode, vnode) } // 如果vnode不是文本节点或者注释节点 if (isUndef(vnode.text)) { // 并且都有子节点 if (isDef(oldCh) && isDef(ch)) { // 并且子节点不完全一致,则调用updateChildren if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue, removeOnly) // 如果只有新的vnode有子节点 } else if (isDef(ch)) { if (isDef(oldVnode.text)) nodeOps.setTextContent(elm, '') // elm已经引用了老的dom节点,在老的dom节点上添加子节点 addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue) // 如果新vnode没有子节点,而vnode有子节点,直接删除老的oldCh } else if (isDef(oldCh)) { removeVnodes(elm, oldCh, 0, oldCh.length - 1) // 如果老节点是文本节点 } else if (isDef(oldVnode.text)) { nodeOps.setTextContent(elm, '') } // 如果新vnode和老vnode是文本节点或注释节点 // 但是vnode.text != oldVnode.text时,只需要更新vnode.elm的文本内容就可以 } else if (oldVnode.text !== vnode.text) { nodeOps.setTextContent(elm, vnode.text) } if (isDef(data)) { if (isDef(i = data.hook) && isDef(i = i.postpatch)) i(oldVnode, vnode) } }
patchVnode
主要做了几个判断:
dom
的文本内容为新节点的文本内容DOM
,并且添加进父节点DOM
删除子节点不完全一致,则调用updateChildren
function updateChildren (parentElm, oldCh, newCh, insertedVnodeQueue, removeOnly) { let oldStartIdx = 0 // 旧头索引 let newStartIdx = 0 // 新头索引 let oldEndIdx = oldCh.length - 1 // 旧尾索引 let newEndIdx = newCh.length - 1 // 新尾索引 let oldStartVnode = oldCh[0] // oldVnode的第一个child let oldEndVnode = oldCh[oldEndIdx] // oldVnode的最后一个child let newStartVnode = newCh[0] // newVnode的第一个child let newEndVnode = newCh[newEndIdx] // newVnode的最后一个child let oldKeyToIdx, idxInOld, vnodeToMove, refElm // removeOnly is a special flag used only by <transition-group> // to ensure removed elements stay in correct relative positions // during leaving transitions const canMove = !removeOnly // 如果oldStartVnode和oldEndVnode重合,并且新的也都重合了,证明diff完了,循环结束 while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) { // 如果oldVnode的第一个child不存在 if (isUndef(oldStartVnode)) { // oldStart索引右移 oldStartVnode = oldCh[++oldStartIdx] // Vnode has been moved left // 如果oldVnode的最后一个child不存在 } else if (isUndef(oldEndVnode)) { // oldEnd索引左移 oldEndVnode = oldCh[--oldEndIdx] // oldStartVnode和newStartVnode是同一个节点 } else if (sameVnode(oldStartVnode, newStartVnode)) { // patch oldStartVnode和newStartVnode, 索引左移,继续循环 patchVnode(oldStartVnode, newStartVnode, insertedVnodeQueue) oldStartVnode = oldCh[++oldStartIdx] newStartVnode = newCh[++newStartIdx] // oldEndVnode和newEndVnode是同一个节点 } else if (sameVnode(oldEndVnode, newEndVnode)) { // patch oldEndVnode和newEndVnode,索引右移,继续循环 patchVnode(oldEndVnode, newEndVnode, insertedVnodeQueue) oldEndVnode = oldCh[--oldEndIdx] newEndVnode = newCh[--newEndIdx] // oldStartVnode和newEndVnode是同一个节点 } else if (sameVnode(oldStartVnode, newEndVnode)) { // Vnode moved right // patch oldStartVnode和newEndVnode patchVnode(oldStartVnode, newEndVnode, insertedVnodeQueue) // 如果removeOnly是false,则将oldStartVnode.eml移动到oldEndVnode.elm之后 canMove && nodeOps.insertBefore(parentElm, oldStartVnode.elm, nodeOps.nextSibling(oldEndVnode.elm)) // oldStart索引右移,newEnd索引左移 oldStartVnode = oldCh[++oldStartIdx] newEndVnode = newCh[--newEndIdx] // 如果oldEndVnode和newStartVnode是同一个节点 } else if (sameVnode(oldEndVnode, newStartVnode)) { // Vnode moved left // patch oldEndVnode和newStartVnode patchVnode(oldEndVnode, newStartVnode, insertedVnodeQueue) // 如果removeOnly是false,则将oldEndVnode.elm移动到oldStartVnode.elm之前 canMove && nodeOps.insertBefore(parentElm, oldEndVnode.elm, oldStartVnode.elm) // oldEnd索引左移,newStart索引右移 oldEndVnode = oldCh[--oldEndIdx] newStartVnode = newCh[++newStartIdx] // 如果都不匹配 } else { if (isUndef(oldKeyToIdx)) oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx) // 尝试在oldChildren中寻找和newStartVnode的具有相同的key的Vnode idxInOld = isDef(newStartVnode.key) ? oldKeyToIdx[newStartVnode.key] : findIdxInOld(newStartVnode, oldCh, oldStartIdx, oldEndIdx) // 如果未找到,说明newStartVnode是一个新的节点 if (isUndef(idxInOld)) { // New element // 创建一个新Vnode createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm) // 如果找到了和newStartVnodej具有相同的key的Vnode,叫vnodeToMove } else { vnodeToMove = oldCh[idxInOld] /* istanbul ignore if */ if (process.env.NODE_ENV !== 'production' && !vnodeToMove) { warn( 'It seems there are duplicate keys that is causing an update error. ' + 'Make sure each v-for item has a unique key.' ) } // 比较两个具有相同的key的新节点是否是同一个节点 //不设key,newCh和oldCh只会进行头尾两端的相互比较,设key后,除了头尾两端的比较外,还会从用key生成的对象oldKeyToIdx中查找匹配的节点,所以为节点设置key可以更高效的利用dom。 if (sameVnode(vnodeToMove, newStartVnode)) { // patch vnodeToMove和newStartVnode patchVnode(vnodeToMove, newStartVnode, insertedVnodeQueue) // 清除 oldCh[idxInOld] = undefined // 如果removeOnly是false,则将找到的和newStartVnodej具有相同的key的Vnode,叫vnodeToMove.elm // 移动到oldStartVnode.elm之前 canMove && nodeOps.insertBefore(parentElm, vnodeToMove.elm, oldStartVnode.elm) // 如果key相同,但是节点不相同,则创建一个新的节点 } else { // same key but different element. treat as new element createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm) } } // 右移 newStartVnode = newCh[++newStartIdx] } }
while
循环主要处理了以下五种情景:
VNode
节点的 start
相同时,直接 patchVnode
,同时新老 VNode
节点的开始索引都加 1VNode
节点的 end
相同时,同样直接 patchVnode
,同时新老 VNode
节点的结束索引都减 1VNode
节点的 start
和新 VNode
节点的 end
相同时,这时候在 patchVnode
后,还需要将当前真实 dom
节点移动到 oldEndVnode
的后面,同时老 VNode
节点开始索引加 1,新 VNode
节点的结束索引减 1VNode
节点的 end
和新 VNode
节点的 start
相同时,这时候在 patchVnode
后,还需要将当前真实 dom
节点移动到 oldStartVnode
的前面,同时老 VNode
节点结束索引减 1,新 VNode
节点的开始索引加 1VNode
为 key
值,对应 index
序列为 value
值的哈希表中找到与 newStartVnode
一致 key
的旧的 VNode
节点,再进行patchVnode
,同时将这个真实 dom
移动到 oldStartVnode
对应的真实 dom
的前面createElm
创建一个新的 dom
节点放到当前 newStartIdx
的位置watcher
就会调用patch
给真实的DOM
打补丁isSameVnode
进行判断,相同则调用patchVnode
方法patchVnode
做了以下操作:dom
,称为el
el
文本节点设置为Vnode
的文本节点oldVnode
有子节点而VNode
没有,则删除el
子节点oldVnode
没有子节点而VNode
有,则将VNode
的子节点真实化后添加到el
updateChildren
函数比较子节点updateChildren
主要做了以下操作:VNode
的头尾指针patchVnode
进行patch
重复流程、调用createElem
创建一个新节点,从哈希表寻找 key
一致的VNode
节点再分情况操作Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!