Table des matières
1. Initialisation
2. Graphiques linéaires
3. Nuages ​​de points (graphiques à nuages ​​de points)
ax.plot_wireframe(X, Y, Z, *args, **kwargs)
Copier après la connexion
" >
ax.plot_wireframe(X, Y, Z, *args, **kwargs)
Copier après la connexion
ax.plot_surface(X, Y, Z, *args, **kwargs)
Copier après la connexion
" >
ax.plot_surface(X, Y, Z, *args, **kwargs)
Copier après la connexion
ax.plot_trisurf(*args, **kwargs)
Copier après la connexion
" >
ax.plot_trisurf(*args, **kwargs)
Copier après la connexion
ax.contour(X, Y, Z, *args, **kwargs)
Copier après la connexion
" >
ax.contour(X, Y, Z, *args, **kwargs)
Copier après la connexion
ax.bar(left, height, zs=0, zdir='z', *args, **kwargs
Copier après la connexion
" >
ax.bar(left, height, zs=0, zdir='z', *args, **kwargs
Copier après la connexion
Maison développement back-end Tutoriel Python Tutoriel détaillé sur le dessin de graphiques tridimensionnels en python

Tutoriel détaillé sur le dessin de graphiques tridimensionnels en python

Aug 30, 2022 pm 12:04 PM
python

【Recommandation associée : Tutoriel vidéo Python3

Cet article ne résume que les méthodes de dessin les plus élémentaires.

1. Initialisation

On suppose que le package d'outils matplotlib a été installé.

Utilisez matplotlib.figure.Figure pour créer un cadre :

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
Copier après la connexion

2. Graphiques linéaires

Utilisation de base :

ax.plot(x,y,z,label=' ')
Copier après la connexion

code :

import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
 
mpl.rcParams['legend.fontsize'] = 10
 
fig = plt.figure()
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label='parametric curve')
ax.legend()
 
plt.show()
Copier après la connexion

3. Nuages ​​de points (graphiques à nuages ​​de points)

Utilisation de base :

ax.scatter(xs, ys, zs, s=20, c=None, depthshade=True, *args, *kwargs)
Copier après la connexion

    xs,ys,zs : données d'entrée ;
  • s : taille du point de dispersion
  • c : couleur, telle que c = 'r' est rouge ; Vrai, Faux est opaque
  • *args, etc. sont des variables étendues, telles que maker = 'o', alors le résultat scatter a la forme de 'o'
  • code:
  • from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
     
     
    def randrange(n, vmin, vmax):
        '''
        Helper function to make an array of random numbers having shape (n, )
        with each number distributed Uniform(vmin, vmax).
        '''
        return (vmax - vmin)*np.random.rand(n) + vmin
     
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
     
    n = 100
     
    # For each set of style and range settings, plot n random points in the box
    # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].
    for c, m, zlow, zhigh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]:
        xs = randrange(n, 23, 32)
        ys = randrange(n, 0, 100)
        zs = randrange(n, zlow, zhigh)
        ax.scatter(xs, ys, zs, c=c, marker=m)
     
    ax.set_xlabel('X Label')
    ax.set_ylabel('Y Label')
    ax.set_zlabel('Z Label')
     
    plt.show()
    Copier après la connexion

4. Bloc de ligne diagramme (tracés filaires)

Utilisation de base :

ax.plot_wireframe(X, Y, Z, *args, **kwargs)
Copier après la connexion

X, Y, Z : données d'entrée

    rstride : longueur de pas de ligne
  • cstride : longueur de pas de colonne
  • rcount : limite supérieure du numéro de ligne
  • ccount : supérieur limite du numéro de colonne
  • code:
  • from mpl_toolkits.mplot3d import axes3d
    import matplotlib.pyplot as plt
     
     
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
     
    # Grab some test data.
    X, Y, Z = axes3d.get_test_data(0.05)
     
    # Plot a basic wireframe.
    ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
     
    plt.show()
    Copier après la connexion

5. Tracés de surface

Utilisation de base:

ax.plot_surface(X, Y, Z, *args, **kwargs)
Copier après la connexion

X, Y, Z: données

    rstride, cstride, rcount, ccount: Identique à la définition des tracés filaires
  • couleur : couleur de la surface
  • cmap : couche
  • code :
  • from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from matplotlib import cm
    from matplotlib.ticker import LinearLocator, FormatStrFormatter
    import numpy as np
     
     
    fig = plt.figure()
    ax = fig.gca(projection='3d')
     
    # Make data.
    X = np.arange(-5, 5, 0.25)
    Y = np.arange(-5, 5, 0.25)
    X, Y = np.meshgrid(X, Y)
    R = np.sqrt(X**2 + Y**2)
    Z = np.sin(R)
     
    # Plot the surface.
    surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
                           linewidth=0, antialiased=False)
     
    # Customize the z axis.
    ax.set_zlim(-1.01, 1.01)
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
     
    # Add a color bar which maps values to colors.
    fig.colorbar(surf, shrink=0.5, aspect=5)
     
    plt.show()
    Copier après la connexion

6. Tracés tri-surface

Utilisation de base :

ax.plot_trisurf(*args, **kwargs)
Copier après la connexion

X, Y, Z : données

    Les autres paramètres sont similaires au tracé de surface
  • code:
  • from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
     
     
    n_radii = 8
    n_angles = 36
     
    # Make radii and angles spaces (radius r=0 omitted to eliminate duplication).
    radii = np.linspace(0.125, 1.0, n_radii)
    angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
     
    # Repeat all angles for each radius.
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
     
    # Convert polar (radii, angles) coords to cartesian (x, y) coords.
    # (0, 0) is manually added at this stage,  so there will be no duplicate
    # points in the (x, y) plane.
    x = np.append(0, (radii*np.cos(angles)).flatten())
    y = np.append(0, (radii*np.sin(angles)).flatten())
     
    # Compute z to make the pringle surface.
    z = np.sin(-x*y)
     
    fig = plt.figure()
    ax = fig.gca(projection='3d')
     
    ax.plot_trisurf(x, y, z, linewidth=0.2, antialiased=True)
     
    plt.show()
    Copier après la connexion

7. Tracés de contour

Utilisation de base:

ax.contour(X, Y, Z, *args, **kwargs)
Copier après la connexion

code:

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
 
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
cset = ax.contour(X, Y, Z, cmap=cm.coolwarm)
ax.clabel(cset, fontsize=9, inline=1)
 
plt.show()
Copier après la connexion

Contours bidimensionnels, il peut également être dessiné avec un dessin tridimensionnel carte de surface :

code:

from mpl_toolkits.mplot3d import axes3d
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
 
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
 
ax.set_xlabel('X')
ax.set_xlim(-40, 40)
ax.set_ylabel('Y')
ax.set_ylim(-40, 40)
ax.set_zlabel('Z')
ax.set_zlim(-100, 100)
 
plt.show()
Copier après la connexion

Il peut également s'agir de la projection de contours tridimensionnels sur un plan bidimensionnel:

code:

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
 
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
cset = ax.contourf(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
cset = ax.contourf(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
cset = ax.contourf(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
 
ax.set_xlabel('X')
ax.set_xlim(-40, 40)
ax.set_ylabel('Y')
ax.set_ylim(-40, 40)
ax.set_zlabel('Z')
ax.set_zlim(-100, 100)
 
plt.show()
Copier après la connexion

8. Diagrammes à barres (image)

Basic utilisation :

ax.bar(left, height, zs=0, zdir='z', *args, **kwargs
Copier après la connexion

x, y, zs = z, data

    zdir : La direction de la planarisation du graphique à barres, qui peut être comprise en détail selon le code.
  • code:
  • from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
     
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]):
        xs = np.arange(20)
        ys = np.random.rand(20)
     
        # You can provide either a single color or an array. To demonstrate this,
        # the first bar of each set will be colored cyan.
        cs = [c] * len(xs)
        cs[0] = 'c'
        ax.bar(xs, ys, zs=z, zdir='y', color=cs, alpha=0.8)
     
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
     
    plt.show()
    Copier après la connexion

9. Sous-intrigue (sous-intrigue)

Un graphique 2D différent, distribué dans l'espace 3D En fait, l'espace de projection n'est pas vide, code correspondant:

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
 
fig = plt.figure()
ax = fig.gca(projection='3d')
 
# Plot a sin curve using the x and y axes.
x = np.linspace(0, 1, 100)
y = np.sin(x * 2 * np.pi) / 2 + 0.5
ax.plot(x, y, zs=0, zdir='z', label='curve in (x,y)')
 
# Plot scatterplot data (20 2D points per colour) on the x and z axes.
colors = ('r', 'g', 'b', 'k')
x = np.random.sample(20*len(colors))
y = np.random.sample(20*len(colors))
c_list = []
for c in colors:
    c_list.append([c]*20)
# By using zdir='y', the y value of these points is fixed to the zs value 0
# and the (x,y) points are plotted on the x and z axes.
ax.scatter(x, y, zs=0, zdir='y', c=c_list, label='points in (x,z)')
 
# Make legend, set axes limits and labels
ax.legend()
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.set_zlim(0, 1)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
Copier après la connexion

.

Utilisation de la sous-intrigue B

La différence avec MATLAB est que si un effet à quatre sous-intrigues, tel que :

MATLAB :

subplot(2,2,1)
subplot(2,2,2)
subplot(2,2,[3,4])
Copier après la connexion

Python :

subplot(2,2,1)
subplot(2,2,2)
subplot(2,1,2)
Copier après la connexion

code :

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D, get_test_data
from matplotlib import cm
import numpy as np
 
 
# set up a figure twice as wide as it is tall
fig = plt.figure(figsize=plt.figaspect(0.5))
 
#===============
#  First subplot
#===============
# set up the axes for the first plot
ax = fig.add_subplot(2, 2, 1, projection='3d')
 
# plot a 3D surface like in the example mplot3d/surface3d_demo
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
                       linewidth=0, antialiased=False)
ax.set_zlim(-1.01, 1.01)
fig.colorbar(surf, shrink=0.5, aspect=10)
 
#===============
# Second subplot
#===============
# set up the axes for the second plot
ax = fig.add_subplot(2,1,2, projection='3d')
 
# plot a 3D wireframe like in the example mplot3d/wire3d_demo
X, Y, Z = get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
 
plt.show()
Copier après la connexion

Supplément :

Utilisation de base des commentaires textuels :

code :

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
 
 
fig = plt.figure()
ax = fig.gca(projection='3d')
 
# Demo 1: zdir
zdirs = (None, 'x', 'y', 'z', (1, 1, 0), (1, 1, 1))
xs = (1, 4, 4, 9, 4, 1)
ys = (2, 5, 8, 10, 1, 2)
zs = (10, 3, 8, 9, 1, 8)
 
for zdir, x, y, z in zip(zdirs, xs, ys, zs):
    label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir)
    ax.text(x, y, z, label, zdir)
 
# Demo 2: color
ax.text(9, 0, 0, "red", color='red')
 
# Demo 3: text2D
# Placement 0, 0 would be the bottom left, 1, 1 would be the top right.
ax.text2D(0.05, 0.95, "2D Text", transform=ax.transAxes)
 
# Tweaking display region and labels
ax.set_xlim(0, 10)
ax.set_ylim(0, 10)
ax.set_zlim(0, 10)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
 
plt.show()
Copier après la connexion

[Recommandations associées : Tutoriel vidéo Python3

]

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Choisir entre PHP et Python: un guide Choisir entre PHP et Python: un guide Apr 18, 2025 am 12:24 AM

PHP convient au développement Web et au prototypage rapide, et Python convient à la science des données et à l'apprentissage automatique. 1.Php est utilisé pour le développement Web dynamique, avec une syntaxe simple et adapté pour un développement rapide. 2. Python a une syntaxe concise, convient à plusieurs champs et a un écosystème de bibliothèque solide.

PHP et Python: différents paradigmes expliqués PHP et Python: différents paradigmes expliqués Apr 18, 2025 am 12:26 AM

PHP est principalement la programmation procédurale, mais prend également en charge la programmation orientée objet (POO); Python prend en charge une variété de paradigmes, y compris la POO, la programmation fonctionnelle et procédurale. PHP convient au développement Web, et Python convient à une variété d'applications telles que l'analyse des données et l'apprentissage automatique.

Peut-on exécuter le code sous Windows 8 Peut-on exécuter le code sous Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code peut fonctionner sur Windows 8, mais l'expérience peut ne pas être excellente. Assurez-vous d'abord que le système a été mis à jour sur le dernier correctif, puis téléchargez le package d'installation VS Code qui correspond à l'architecture du système et l'installez comme invité. Après l'installation, sachez que certaines extensions peuvent être incompatibles avec Windows 8 et doivent rechercher des extensions alternatives ou utiliser de nouveaux systèmes Windows dans une machine virtuelle. Installez les extensions nécessaires pour vérifier si elles fonctionnent correctement. Bien que le code VS soit possible sur Windows 8, il est recommandé de passer à un système Windows plus récent pour une meilleure expérience de développement et une meilleure sécurité.

Le code Visual Studio peut-il être utilisé dans Python Le code Visual Studio peut-il être utilisé dans Python Apr 15, 2025 pm 08:18 PM

VS Code peut être utilisé pour écrire Python et fournit de nombreuses fonctionnalités qui en font un outil idéal pour développer des applications Python. Il permet aux utilisateurs de: installer des extensions Python pour obtenir des fonctions telles que la réalisation du code, la mise en évidence de la syntaxe et le débogage. Utilisez le débogueur pour suivre le code étape par étape, trouver et corriger les erreurs. Intégrez Git pour le contrôle de version. Utilisez des outils de mise en forme de code pour maintenir la cohérence du code. Utilisez l'outil de liaison pour repérer les problèmes potentiels à l'avance.

L'extension VScode est-elle malveillante? L'extension VScode est-elle malveillante? Apr 15, 2025 pm 07:57 PM

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

Comment exécuter des programmes dans Terminal Vscode Comment exécuter des programmes dans Terminal Vscode Apr 15, 2025 pm 06:42 PM

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Apr 16, 2025 am 12:12 AM

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.

PHP et Python: une plongée profonde dans leur histoire PHP et Python: une plongée profonde dans leur histoire Apr 18, 2025 am 12:25 AM

PHP est originaire en 1994 et a été développé par Rasmuslerdorf. Il a été utilisé à l'origine pour suivre les visiteurs du site Web et a progressivement évolué en un langage de script côté serveur et a été largement utilisé dans le développement Web. Python a été développé par Guidovan Rossum à la fin des années 1980 et a été publié pour la première fois en 1991. Il met l'accent sur la lisibilité et la simplicité du code, et convient à l'informatique scientifique, à l'analyse des données et à d'autres domaines.

See all articles