


Exemple détaillé de structure de données tensorielles dans Pytorch
【Recommandation associée : Tutoriel vidéo Python3】
torch.Tensor
torch.Tensor
est une matrice multidimensionnelle contenant des éléments de type de données unique , similaire au array
de numpy.
Le Tensor peut être généré à l'aide de torch.tensor() pour convertir la liste de Python ou les données de séquence. Celle générée est dtype
et la valeur par défaut est torch. FloatTensor
. torch.Tensor
是一种包含单一数据类型元素的多维矩阵,类似于 numpy 的 array
。
Tensor 可以使用 torch.tensor() 转换 Python 的 list 或序列数据生成,生成的是dtype
默认是 torch.FloatTensor
。
注意
torch.tensor()
总是拷贝 data。如果你有一个 Tensor data 并且仅仅想改变它的requires_grad
属性,可用requires_grad_()
或者detach()
来避免拷贝。如果你有一个numpy
数组并且想避免拷贝,请使用torch.as_tensor()
。
1,指定数据类型的 Tensor 可以通过传递参数 torch.dtype
和/或者 torch.device
到构造函数生成:
注意为了改变已有的 tensor 的 torch.device 和/或者 torch.dtype, 考虑使用
to()
方法.
>>> torch.ones([2,3], dtype=torch.float64, device="cuda:0") tensor([[1., 1., 1.], [1., 1., 1.]], device='cuda:0', dtype=torch.float64) >>> torch.ones([2,3], dtype=torch.float32) tensor([[1., 1., 1.], [1., 1., 1.]])
2,Tensor 的内容可以通过 Python索引或者切片访问以及修改:
>>> matrix = torch.tensor([[2,3,4],[5,6,7]]) >>> print(matrix[1][2]) tensor(7) >>> matrix[1][2] = 9 >>> print(matrix) tensor([[2, 3, 4], [5, 6, 9]])
3,使用 torch.Tensor.item()
或者 int()
方法从只有一个值的 Tensor中获取 Python Number:
>>> x = torch.tensor([[4.5]]) >>> x tensor([[4.5000]]) >>> x.item() 4.5 >>> int(x) 4
4,Tensor可以通过参数 requires_grad=True
创建, 这样 torch.autograd
会记录相关的运算实现自动求导:
>>> x = torch.tensor([[1., -1.], [1., 1.]], requires_grad=True) >>> out = x.pow(2).sum() >>> out.backward() >>> x.grad tensor([[ 2.0000, -2.0000], [ 2.0000, 2.0000]])
5,每一个 tensor都有一个相应的 torch.Storage
保存其数据。tensor 类提供了一个多维的、strided 视图, 并定义了数值操作。
Tensor 数据类型
Torch 定义了七种 CPU tensor 类型和八种 GPU tensor 类型:
torch.Tensor
是默认的 tensor 类型(torch.FloatTensor
)的简称,即 32
位浮点数数据类型。
Tensor 的属性
Tensor 有很多属性,包括数据类型、Tensor 的维度、Tensor 的尺寸。
- 数据类型:可通过改变 torch.tensor() 方法的 dtype 参数值,来设定不同的 tensor 数据类型。
- 维度:不同类型的数据可以用不同维度(dimension)的张量来表示。标量为 0 维张量,向量为 1 维张量,矩阵为 2 维张量。彩色图像有 rgb 三个通道,可以表示为 3 维张量。视频还有时间维,可以表示为 4 维张量,有几个中括号 [ 维度就是几。可使用 dim() 方法 获取 tensor 的维度。
- 尺寸:可以使用 shape属性或者 size()方法查看张量在每一维的长度,可以使用 view()方法或者reshape() 方法改变张量的尺寸。
样例代码如下:
matrix = torch.tensor([[[1,2,3,4],[5,6,7,8]], [[5,4,6,7], [5,6,8,9]]], dtype = torch.float64) print(matrix) # 打印 tensor print(matrix.dtype) # 打印 tensor 数据类型 print(matrix.dim()) # 打印 tensor 维度 print(matrix.size()) # 打印 tensor 尺寸 print(matrix.shape) # 打印 tensor 尺寸 matrix2 = matrix.view(4, 2, 2) # 改变 tensor 尺寸 print(matrix2)
程序输出结果如下:
view 和 reshape 的区别
两个方法都是用来改变 tensor 的 shape,view() 只适合对满足连续性条件(contiguous
)的 tensor 进行操作,而 reshape() 同时还可以对不满足连续性条件的 tensor 进行操作。在满足 tensor 连续性条件(contiguous
)时,a.reshape() 返回的结果与a.view() 相同,都不会开辟新内存空间;不满足 contiguous
时, 直接使用 view() 方法会失败,reshape()
依然有用,但是会重新开辟内存空间,不与之前的 tensor 共享内存,即返回的是 ”副本“(等价于先调用 contiguous()
方法再使用 view()
方法)。
更多理解参考这篇文章
Tensor 与 ndarray
1,张量和 numpy 数组。可以用 .numpy()
方法从 Tensor 得到 numpy 数组,也可以用 torch.from_numpy
从 numpy 数组得到Tensor。这两种方法关联的 Tensor 和 numpy 数组是共享数据内存的。可以用张量的 clone
方法拷贝张量,中断这种关联。
arr = np.random.rand(4,5) print(type(arr)) tensor1 = torch.from_numpy(arr) print(type(tensor1)) arr1 = tensor1.numpy() print(type(arr1)) """ <class 'numpy.ndarray'> <class 'torch.Tensor'> <class 'numpy.ndarray'> """
2,item()
方法和 tolist()
Notez que🎜1. Un Tensor d'un type de données spécifié peut être généré en passant les paramètrestorch.tensor()
copie toujours les données. Si vous disposez de données Tensor et que vous souhaitez simplement modifier son attributrequires_grad
, utilisezrequires_grad_()
oudetach()
pour éviter la copie. Si vous disposez d'un tableaunumpy
et que vous souhaitez éviter la copie, utiliseztorch.as_tensor()
. 🎜
torch.dtype
et/ou torch.device
au constructeur : 🎜< blockquote>🎜 Notez que pour changer le torch.device et/ou torch.dtype d'un tenseur existant, pensez à utiliser la méthode to()
.🎜# item方法和tolist方法可以将张量转换成Python数值和数值列表 scalar = torch.tensor(5) # 标量 s = scalar.item() print(s) print(type(s)) tensor = torch.rand(3,2) # 矩阵 t = tensor.tolist() print(t) print(type(t)) """ 1.0 <class 'float'> [[0.8211846351623535, 0.20020723342895508], [0.011571824550628662, 0.2906131148338318]] <class 'list'> """
>>> torch.rand([1,1,3,3]) tensor([[[[0.3005, 0.6891, 0.4628], [0.4808, 0.8968, 0.5237], [0.4417, 0.2479, 0.0175]]]]) >>> torch.normal(2, 3, size=(1, 4)) tensor([[3.6851, 3.2853, 1.8538, 3.5181]]) >>> torch.full([2, 2], 4) tensor([[4, 4], [4, 4]]) >>> torch.arange(0,10,2) tensor([0, 2, 4, 6, 8]) >>> torch.eye(3,3) tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
torch.Tensor.item()
ou int()
à partir de < strong>Tensor avec une seule valeur Obtenez le numéro Python : 🎜rrreee🎜4, Tensor peut être créé avec le paramètre requires_grad=True
, de sorte que torch.autograd</code > enregistrera les opérations pertinentes pour réaliser la dérivation automatique : 🎜rrreee🎜5 , chaque tenseur a un <code>torch.Storage
correspondant pour sauvegarder ses données. La classe tenseur fournit une vue multidimensionnelle et progressive et définit des opérations numériques. 🎜🎜Type de données Tensor🎜🎜Torch définit sept types de tenseurs CPU et huit types de tenseurs GPU : 🎜🎜🎜
torch.Tensor
est le type de tenseur par défaut (torch.FloatTensor< /code> ), c'est-à-dire un type de données à virgule flottante <code>32
bits. 🎜🎜Attributs du Tensor🎜🎜Tensor a de nombreux attributs, notamment le type de données, la dimension du Tensor et la taille du Tensor. 🎜
- Type de données : différents types de données tenseurs peuvent être définis en modifiant la valeur du paramètre dtype de la méthode torch.tensor().
- Dimension : différents types de données peuvent être représentés par des tenseurs de différentes dimensions. Un scalaire est un tenseur à 0 dimension, un vecteur est un tenseur à 1 dimension et une matrice est un tenseur à 2 dimensions. Les images couleur ont trois canaux, RVB, et peuvent être représentées comme un tenseur tridimensionnel. La vidéo a également une dimension temporelle, qui peut être exprimée sous la forme d'un tenseur à 4 dimensions avec plusieurs crochets [Les dimensions sont combien. Les dimensions d'un tenseur peuvent être obtenues à l'aide de la méthode dim().
- Taille : vous pouvez utiliser l'attribut shape ou la méthode size() pour afficher la longueur du tenseur dans chaque dimension, et vous pouvez utiliser la méthode view() ou la méthode reshape() pour modifier la taille du tenseur.
🎜
🎜🎜La différence entre visualiser et remodeler🎜 🎜Les deux méthodes sont identiques. Elle est utilisée pour changer la forme du tenseur. view() ne convient qu'aux tenseurs opérationnels qui remplissent les conditions de continuité (contigu
), tandis que reshape() peut également opérer sur tenseurs qui ne remplissent pas les conditions de continuité. Lorsque la condition de continuité du tenseur (contigu
) est satisfaite, le résultat renvoyé par a.reshape() est le même que a.view(), et aucun nouvel espace mémoire ne sera ouvert si ; contigu
n'est pas satisfait du code>, l'utilisation directe de la méthode view() échouera. reshape()
est toujours utile, mais il rouvrira l'espace mémoire et ne partagera pas la mémoire. avec le tenseur précédent, c'est-à-dire qu'il renverra une copie de "" " (équivalent à appeler d'abord la méthode contiguous()
puis à utiliser view( )
).
Pour plus de compréhension, reportez-vous à cet article🎜🎜Tensor et ndarray🎜🎜1, tensor et numpy array. Vous pouvez utiliser la méthode .numpy()
pour obtenir un tableau numpy à partir d'un Tensor, ou vous pouvez utiliser torch.from_numpy
pour obtenir un Tensor à partir d'un tableau numpy. Les tableaux Tensor et numpy associés à ces deux méthodes partagent la mémoire des données. Vous pouvez utiliser la méthode clone
du tenseur pour copier le tenseur et rompre cette association. 🎜rrreee🎜2, la méthode item()
et la méthode tolist()
peuvent convertir des tenseurs en nombres Python et en listes de nombres🎜
# item方法和tolist方法可以将张量转换成Python数值和数值列表 scalar = torch.tensor(5) # 标量 s = scalar.item() print(s) print(type(s)) tensor = torch.rand(3,2) # 矩阵 t = tensor.tolist() print(t) print(type(t)) """ 1.0 <class 'float'> [[0.8211846351623535, 0.20020723342895508], [0.011571824550628662, 0.2906131148338318]] <class 'list'> """
创建 Tensor
创建 tensor ,可以传入数据或者维度,torch.tensor() 方法只能传入数据,torch.Tensor() 方法既可以传入数据也可以传维度,强烈建议 tensor() 传数据,Tensor() 传维度,否则易搞混。
传入维度的方法
方法名 | 方法功能 | 备注 |
---|---|---|
torch.rand(*sizes, out=None) → Tensor | 返回一个张量,包含了从区间 [0, 1) 的均匀分布中抽取的一组随机数。张量的形状由参数sizes定义。 | 推荐 |
torch.randn(*sizes, out=None) → Tensor | 返回一个张量,包含了从标准正态分布(均值为0,方差为1,即高斯白噪声)中抽取的一组随机数。张量的形状由参数sizes定义。 | 不推荐 |
torch.normal(means, std, out=None) → Tensor | 返回一个张量,包含了从指定均值 means 和标准差 std 的离散正态分布中抽取的一组随机数。标准差 std 是一个张量,包含每个输出元素相关的正态分布标准差。 | 多种形式,建议看源码 |
torch.rand_like(a) | 根据数据 a 的 shape 来生成随机数据 | 不常用 |
torch.randint(low=0, high, size) | 生成指定范围(low, hight )和 size 的随机整数数据 | 常用 |
torch.full([2, 2], 4) | 生成给定维度,全部数据相等的数据 | 不常用 |
torch.arange(start=0, end, step=1, *, out=None) | 生成指定间隔的数据 | 易用常用 |
torch.ones(*size, *, out=None) | 生成给定 size 且值全为1 的矩阵数据 | 简单 |
zeros()/zeros_like()/eye() | 全 0 的 tensor 和 对角矩阵 | 简单 |
样例代码:
>>> torch.rand([1,1,3,3]) tensor([[[[0.3005, 0.6891, 0.4628], [0.4808, 0.8968, 0.5237], [0.4417, 0.2479, 0.0175]]]]) >>> torch.normal(2, 3, size=(1, 4)) tensor([[3.6851, 3.2853, 1.8538, 3.5181]]) >>> torch.full([2, 2], 4) tensor([[4, 4], [4, 4]]) >>> torch.arange(0,10,2) tensor([0, 2, 4, 6, 8]) >>> torch.eye(3,3) tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
【相关推荐:Python3视频教程 】
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Cet article expliquera comment améliorer les performances du site Web en analysant les journaux Apache dans le système Debian. 1. Bases de l'analyse du journal APACH LOG enregistre les informations détaillées de toutes les demandes HTTP, y compris l'adresse IP, l'horodatage, l'URL de la demande, la méthode HTTP et le code de réponse. Dans Debian Systems, ces journaux sont généralement situés dans les répertoires /var/log/apache2/access.log et /var/log/apache2/error.log. Comprendre la structure du journal est la première étape d'une analyse efficace. 2.

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

PHP et Python ont chacun leurs propres avantages et choisissent en fonction des exigences du projet. 1.Php convient au développement Web, en particulier pour le développement rapide et la maintenance des sites Web. 2. Python convient à la science des données, à l'apprentissage automatique et à l'intelligence artificielle, avec syntaxe concise et adaptée aux débutants.

La fonction ReadDir dans le système Debian est un appel système utilisé pour lire le contenu des répertoires et est souvent utilisé dans la programmation C. Cet article expliquera comment intégrer ReadDir avec d'autres outils pour améliorer sa fonctionnalité. Méthode 1: combinant d'abord le programme de langue C et le pipeline, écrivez un programme C pour appeler la fonction readdir et sortir le résultat: # include # include # include # includeIntmain (intargc, char * argv []) {dir * dir; structDirent * entrée; if (argc! = 2) {

Cet article traite de la méthode de détection d'attaque DDOS. Bien qu'aucun cas d'application directe de "Debiansniffer" n'ait été trouvé, les méthodes suivantes ne peuvent être utilisées pour la détection des attaques DDOS: technologie de détection d'attaque DDOS efficace: détection basée sur l'analyse du trafic: identification des attaques DDOS en surveillant des modèles anormaux de trafic réseau, tels que la croissance soudaine du trafic, une surtension dans des connexions sur des ports spécifiques, etc. Par exemple, les scripts Python combinés avec les bibliothèques Pyshark et Colorama peuvent surveiller le trafic réseau en temps réel et émettre des alertes. Détection basée sur l'analyse statistique: en analysant les caractéristiques statistiques du trafic réseau, telles que les données

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Cet article vous guidera sur la façon de mettre à jour votre certificat NGINXSSL sur votre système Debian. Étape 1: Installez d'abord CERTBOT, assurez-vous que votre système a des packages CERTBOT et Python3-CERTBOT-NGINX installés. Si ce n'est pas installé, veuillez exécuter la commande suivante: Sudoapt-getUpDaSuDoapt-GetInstallCertBotpyThon3-Certerbot-Nginx Étape 2: Obtenez et configurez le certificat Utilisez la commande Certbot pour obtenir le certificat LETSCRYPT et configure

La configuration d'un serveur HTTPS sur un système Debian implique plusieurs étapes, notamment l'installation du logiciel nécessaire, la génération d'un certificat SSL et la configuration d'un serveur Web (tel qu'Apache ou Nginx) pour utiliser un certificat SSL. Voici un guide de base, en supposant que vous utilisez un serveur Apacheweb. 1. Installez d'abord le logiciel nécessaire, assurez-vous que votre système est à jour et installez Apache et OpenSSL: SudoaptupDaSuDoaptupgradeSudoaptinsta
