一次mysql慢查询事故分析_MySQL
年前项目组接微信公众号。上线之后,跟微信相关的用cid列的查询会话的SQL变慢了几十倍!思考这个问题思考了很久,从出现以来一直是我心头的一个结。cid这一列是建了索引的,普通的cid列更新都没问题,为何只有微信的有问题?相同的前缀又是如何影响索引的?
分析过程 1.explain下微信cid的查询,微信的cid会以mid-qqwanggou001为前缀插入数据
explainselect *from analysis_sessionswhere cid = "mid-qqwanggou001-b99359d9054171901c0"
分析结果如下:
从explain分析可以看出,这个查询使用了索引,但是innodb认为有165万行数据需要给mysql服务器筛选(也就是用where条件过滤)。如果这些庞大的数据在内存,遍历一遍花不了多少时间。但是极有可能,这些数据是在磁盘上的。这么多的数据从磁盘读取然后载入内存,大量磁盘IO必然是十分的耗时的。
2.分析普通cid的查询
取数据进行explain,cid = "sid-a2f9047ddf528d837e5f60843c83aae9"。这个数据是不带公共前缀的。
explainselect *
from analysis_sessions
where cid = "sid-a2f9047ddf528d837e5f60843c83aae9"
分析结果如下:
相同的列,相同的索引,这次存储引擎向mysql服务器仅仅返回了一行数据。也就是说innodb仅仅需要读取一个二级索引的叶子节点。相对于上面那个sql的IO,压力显然小很多。
初步分析结论:带有长前缀的cid查询,innodb存储引擎会向mysql上端服务器返回百万级别的数据。这只是现象,我还是想问,相同的表,相同的列,相同的索引结构(B+树索引),相同的查询,仅仅不同的数据,结果为何有差么大的差别?
近一步分析
纠结这个问题很久了,直到前天晚上散步时候,无意的会想到了 explain结果的key_len这一列。这一列我从来不看,觉得没用,但是27与cid这一列50个varchar的定义格格不入。27明显小于50,首先可以肯定,这个索引用的是前缀索引,说白了,截取了字符串的前面一部分作为索引数据。analysis_session表用的gbk编码,也就是说,索引需要2个字节表示一个varchar。解释一下key_len
27 = 2 * 12 + 2 + 1
27位的索引,仅仅索引了前面12个字符。中间的2存储长度,后面的一个字节存储Null信息,因为这一列是允许Null的。
最终结论:问题到这已经很明了了,微信cid的前缀是17个字符的,大于前缀索引的12个字符,也就是说,所有存储微信cid数据(百万级别)B+树叶子节点将只有一个B+树非叶节点的指针指向这里。于是,当你查微信cid相关的数据时,所有微信cid将被返回给mysql服务器进行where过滤了,效率上讲,这是很恐怖的。索引确实还是被用上了,不然会造成全表扫描。但是这个数据设计的有问题,B+树的查找效率是O(LogN)的,但是遇上这个数据,立刻变成O(N),相当于一个局部全表扫描。
那么合理的推测,只要有新增的微信cid,微信cid的查询只会变的更慢!
引申,更佳的代码 practice:
varchar,blob, text等边长数据建索引的时候,数据库会自动建前缀索引,于是B+树不会索引整个字段的部分。很多同学喜欢用前缀作为字符串的标志,这次要注意了,有前车之鉴了。前缀存入mysql之后会降低检索效率,前缀越长,B+树查询的效率越低。
这里给出代码的建议:
1.将前缀作为后缀,startWith改为endWith
2.不要尝试后缀模糊搜索,like "%.com",这种做法更糟糕,完全用不了索引,于是全表扫描。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

La numérisation complète de la table peut être plus rapide dans MySQL que l'utilisation d'index. Les cas spécifiques comprennent: 1) le volume de données est petit; 2) Lorsque la requête renvoie une grande quantité de données; 3) Lorsque la colonne d'index n'est pas très sélective; 4) Lorsque la requête complexe. En analysant les plans de requête, en optimisant les index, en évitant le sur-index et en maintenant régulièrement des tables, vous pouvez faire les meilleurs choix dans les applications pratiques.

Les capacités de recherche en texte intégral d'InNODB sont très puissantes, ce qui peut considérablement améliorer l'efficacité de la requête de la base de données et la capacité de traiter de grandes quantités de données de texte. 1) INNODB implémente la recherche de texte intégral via l'indexation inversée, prenant en charge les requêtes de recherche de base et avancées. 2) Utilisez la correspondance et contre les mots clés pour rechercher, prendre en charge le mode booléen et la recherche de phrases. 3) Les méthodes d'optimisation incluent l'utilisation de la technologie de segmentation des mots, la reconstruction périodique des index et l'ajustement de la taille du cache pour améliorer les performances et la précision.

Oui, MySQL peut être installé sur Windows 7, et bien que Microsoft ait cessé de prendre en charge Windows 7, MySQL est toujours compatible avec lui. Cependant, les points suivants doivent être notés lors du processus d'installation: téléchargez le programme d'installation MySQL pour Windows. Sélectionnez la version appropriée de MySQL (communauté ou entreprise). Sélectionnez le répertoire d'installation et le jeu de caractères appropriés pendant le processus d'installation. Définissez le mot de passe de l'utilisateur racine et gardez-le correctement. Connectez-vous à la base de données pour les tests. Notez les problèmes de compatibilité et de sécurité sur Windows 7, et il est recommandé de passer à un système d'exploitation pris en charge.

MySQL est un système de gestion de base de données relationnel open source. 1) Créez une base de données et des tables: utilisez les commandes CreateDatabase et CreateTable. 2) Opérations de base: insérer, mettre à jour, supprimer et sélectionner. 3) Opérations avancées: jointure, sous-requête et traitement des transactions. 4) Compétences de débogage: vérifiez la syntaxe, le type de données et les autorisations. 5) Suggestions d'optimisation: utilisez des index, évitez de sélectionner * et utilisez les transactions.

La différence entre l'index cluster et l'index non cluster est: 1. Index en cluster stocke les lignes de données dans la structure d'index, ce qui convient à la requête par clé et plage primaire. 2. L'index non clumpant stocke les valeurs de clé d'index et les pointeurs vers les lignes de données, et convient aux requêtes de colonne de clés non primaires.

Dans la base de données MySQL, la relation entre l'utilisateur et la base de données est définie par les autorisations et les tables. L'utilisateur a un nom d'utilisateur et un mot de passe pour accéder à la base de données. Les autorisations sont accordées par la commande Grant, tandis que le tableau est créé par la commande Create Table. Pour établir une relation entre un utilisateur et une base de données, vous devez créer une base de données, créer un utilisateur, puis accorder des autorisations.

MySQL et MARIADB peuvent coexister, mais doivent être configurés avec prudence. La clé consiste à allouer différents numéros de port et répertoires de données à chaque base de données et ajuster les paramètres tels que l'allocation de mémoire et la taille du cache. La mise en commun de la connexion, la configuration des applications et les différences de version doivent également être prises en compte et doivent être soigneusement testées et planifiées pour éviter les pièges. L'exécution de deux bases de données simultanément peut entraîner des problèmes de performances dans les situations où les ressources sont limitées.

MySQL prend en charge quatre types d'index: B-Tree, hachage, texte intégral et spatial. 1. L'indice de tree B est adapté à la recherche de valeur égale, à la requête de plage et au tri. 2. L'indice de hachage convient aux recherches de valeur égale, mais ne prend pas en charge la requête et le tri des plages. 3. L'index de texte complet est utilisé pour la recherche en texte intégral et convient pour le traitement de grandes quantités de données de texte. 4. L'indice spatial est utilisé pour la requête de données géospatiaux et convient aux applications SIG.
