Maison base de données tutoriel mysql SQL解析顺序_MySQL

SQL解析顺序_MySQL

May 27, 2016 pm 01:46 PM
架构 流程 commande

前言:

 

一直是想知道一条SQL语句是怎么被执行的,它执行的顺序是怎样的,然后查看总结各方资料,就有了下面这一篇博文了。

 

本文将从MySQL总体架构--->查询执行流程--->语句执行顺序来探讨一下其中的知识。

 

一、MySQL架构总览:

 

架构最好看图,再配上必要的说明文字。

 

下图根据参考书籍中一图为原本,再在其上添加上了自己的理解。

SQL解析顺序_MySQL

从上图中我们可以看到,整个架构分为两层,上层是MySQLD的被称为的‘SQL Layer’,下层是各种各样对上提供接口的存储引擎,被称为‘Storage Engine Layer’。其它各个模块和组件,从名字上就可以简单了解到它们的作用,这里就不再累述了。

 

二、查询执行流程

 

下面再向前走一些,容我根据自己的认识说一下查询执行的流程是怎样的:

 

1.连接

 

1.1客户端发起一条Query请求,监听客户端的‘连接管理模块’接收请求

 

1.2将请求转发到‘连接进/线程模块’

 

1.3调用‘用户模块’来进行授权检查

 

1.4通过检查后,‘连接进/线程模块’从‘线程连接池’中取出空闲的被缓存的连接线程和客户端请求对接,如果失败则创建一个新的连接请求

 

2.处理

 

2.1先查询缓存,检查Query语句是否完全匹配,接着再检查是否具有权限,都成功则直接取数据返回

 

2.2上一步有失败则转交给‘命令解析器’,经过词法分析,语法分析后生成解析树

 

2.3接下来是预处理阶段,处理解析器无法解决的语义,检查权限等,生成新的解析树

 

2.4再转交给对应的模块处理

 

2.5如果是SELECT查询还会经由‘查询优化器’做大量的优化,生成执行计划

 

2.6模块收到请求后,通过‘访问控制模块’检查所连接的用户是否有访问目标表和目标字段的权限

 

2.7有则调用‘表管理模块’,先是查看table cache中是否存在,有则直接对应的表和获取锁,否则重新打开表文件

 

2.8根据表的meta数据,获取表的存储引擎类型等信息,通过接口调用对应的存储引擎处理

 

2.9上述过程中产生数据变化的时候,若打开日志功能,则会记录到相应二进制日志文件中

 

3.结果

 

3.1Query请求完成后,将结果集返回给‘连接进/线程模块’

 

3.2返回的也可以是相应的状态标识,如成功或失败等

 

3.3‘连接进/线程模块’进行后续的清理工作,并继续等待请求或断开与客户端的连接

 

一图小总结

SQL解析顺序_MySQL

三、SQL解析顺序

 

接下来再走一步,让我们看看一条SQL语句的前世今生。

 

首先看一下示例语句

 

SELECT DISTINCT
    < select_list >
FROM
    < left_table > < join_type >
JOIN < right_table > ON < join_condition >
WHERE
    < where_condition >
GROUP BY
    < group_by_list >
HAVING
    < having_condition >
ORDER BY
    < order_by_condition >
LIMIT < limit_number >
Copier après la connexion

然而它的执行顺序是这样的

 1 FROM <left_table>
 2 ON <join_condition>
 3 <join_type> JOIN <right_table>
 4 WHERE <where_condition>
 5 GROUP BY <group_by_list>
 6 HAVING <having_condition>
 7 SELECT 
 8 DISTINCT <select_list>
 9 ORDER BY <order_by_condition>
10 LIMIT <limit_number>
Copier après la connexion

虽然自己没想到是这样的,不过一看还是很自然和谐的,从哪里获取,不断的过滤条件,要选择一样或不一样的,排好序,那才知道要取前几条呢。

既然如此了,那就让我们一步步来看看其中的细节吧。

准备工作

1.创建测试数据库

create database testQuery

2.创建测试表

CREATE TABLE table1
(
    uid VARCHAR(10) NOT NULL,
    name VARCHAR(10) NOT NULL,
    PRIMARY KEY(uid)
)ENGINE=INNODB DEFAULT CHARSET=UTF8;

CREATE TABLE table2
(
    oid INT NOT NULL auto_increment,
    uid VARCHAR(10),
    PRIMARY KEY(oid)
)ENGINE=INNODB DEFAULT CHARSET=UTF8;
Copier après la connexion

3.插入数据

INSERT INTO table1(uid,name) VALUES('aaa','mike'),('bbb','jack'),('ccc','mike'),('ddd','mike');

INSERT INTO table2(uid) VALUES('aaa'),('aaa'),('bbb'),('bbb'),('bbb'),('ccc'),(NULL);

4.最后想要的结果

SELECT
    a.uid,
    count(b.oid) AS total
FROM
    table1 AS a
LEFT JOIN table2 AS b ON a.uid = b.uid
WHERE
    a. NAME = &#39;mike&#39;
GROUP BY
    a.uid
HAVING
    count(b.oid) < 2
ORDER BY
    total DESC
LIMIT 1;
Copier après la connexion

!现在开始SQL解析之旅吧!

1. FROM

当涉及多个表的时候,左边表的输出会作为右边表的输入,之后会生成一个虚拟表VT1。

(1-J1)笛卡尔积

计算两个相关联表的笛卡尔积(CROSS JOIN) ,生成虚拟表VT1-J1。

mysql> select * from table1,table2;
+-----+------+-----+------+
| uid | name | oid | uid  |
+-----+------+-----+------+
| aaa | mike |   1 | aaa  |
| bbb | jack |   1 | aaa  |
| ccc | mike |   1 | aaa  |
| ddd | mike |   1 | aaa  |
| aaa | mike |   2 | aaa  |
| bbb | jack |   2 | aaa  |
| ccc | mike |   2 | aaa  |
| ddd | mike |   2 | aaa  |
| aaa | mike |   3 | bbb  |
| bbb | jack |   3 | bbb  |
| ccc | mike |   3 | bbb  |
| ddd | mike |   3 | bbb  |
| aaa | mike |   4 | bbb  |
| bbb | jack |   4 | bbb  |
| ccc | mike |   4 | bbb  |
| ddd | mike |   4 | bbb  |
| aaa | mike |   5 | bbb  |
| bbb | jack |   5 | bbb  |
| ccc | mike |   5 | bbb  |
| ddd | mike |   5 | bbb  |
| aaa | mike |   6 | ccc  |
| bbb | jack |   6 | ccc  |
| ccc | mike |   6 | ccc  |
| ddd | mike |   6 | ccc  |
| aaa | mike |   7 | NULL |
| bbb | jack |   7 | NULL |
| ccc | mike |   7 | NULL |
| ddd | mike |   7 | NULL |
+-----+------+-----+------+
28 rows in set (0.00 sec)
Copier après la connexion

(1-J2)ON过滤

基于虚拟表VT1-J1这一个虚拟表进行过滤,过滤出所有满足ON 谓词条件的列,生成虚拟表VT1-J2。

注意:这里因为语法限制,使用了'WHERE'代替,从中读者也可以感受到两者之间微妙的关系;

mysql> SELECT
    -> *
    -> FROM
    -> table1,
    -> table2
    -> WHERE
    -> table1.uid = table2.uid
    -> ;
+-----+------+-----+------+
| uid | name | oid | uid  |
+-----+------+-----+------+
| aaa | mike |   1 | aaa  |
| aaa | mike |   2 | aaa  |
| bbb | jack |   3 | bbb  |
| bbb | jack |   4 | bbb  |
| bbb | jack |   5 | bbb  |
| ccc | mike |   6 | ccc  |
+-----+------+-----+------+
6 rows in set (0.00 sec)
Copier après la connexion

(1-J3)添加外部列

如果使用了外连接(LEFT,RIGHT,FULL),主表(保留表)中的不符合ON条件的列也会被加入到VT1-J2中,作为外部行,生成虚拟表VT1-J3。

mysql> SELECT
    -> *
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid;
+-----+------+------+------+
| uid | name | oid  | uid  |
+-----+------+------+------+
| aaa | mike |    1 | aaa  |
| aaa | mike |    2 | aaa  |
| bbb | jack |    3 | bbb  |
| bbb | jack |    4 | bbb  |
| bbb | jack |    5 | bbb  |
| ccc | mike |    6 | ccc  |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
7 rows in set (0.00 sec)
Copier après la connexion

下面从网上找到一张很形象的关于‘SQL JOINS'的解释图,如若侵犯了你的权益,请劳烦告知删除,谢谢。

SQL解析顺序_MySQL

2. WHERE

对VT1过程中生成的临时表进行过滤,满足WHERE子句的列被插入到VT2表中。

注意:

此时因为分组,不能使用聚合运算;也不能使用SELECT中创建的别名;

与ON的区别:

如果有外部列,ON针对过滤的是关联表,主表(保留表)会返回所有的列;

如果没有添加外部列,两者的效果是一样的;

应用:

对主表的过滤应该放在WHERE;

对于关联表,先条件查询后连接则用ON,先连接后条件查询则用WHERE;

mysql> SELECT
    -> *
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = &#39;mike&#39;;
+-----+------+------+------+
| uid | name | oid  | uid  |
+-----+------+------+------+
| aaa | mike |    1 | aaa  |
| aaa | mike |    2 | aaa  |
| ccc | mike |    6 | ccc  |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
4 rows in set (0.00 sec)
Copier après la connexion

3. GROUP BY

这个子句会把VT2中生成的表按照GROUP BY中的列进行分组。生成VT3表。

注意:

其后处理过程的语句,如SELECT,HAVING,所用到的列必须包含在GROUP BY中,对于没有出现的,得用聚合函数;

原因:

GROUP BY改变了对表的引用,将其转换为新的引用方式,能够对其进行下一级逻辑操作的列会减少;

我的理解是:

根据分组字段,将具有相同分组字段的记录归并成一条记录,因为每一个分组只能返回一条记录,除非是被过滤掉了,而不在分组字段里面的字段可能会有多个值,多个值是无法放进一条记录的,所以必须通过聚合函数将这些具有多值的列转换成单值;

mysql> SELECT
    -> *
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = &#39;mike&#39;
    -> GROUP BY
    -> a.uid;
+-----+------+------+------+
| uid | name | oid  | uid  |
+-----+------+------+------+
| aaa | mike |    1 | aaa  |
| ccc | mike |    6 | ccc  |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
3 rows in set (0.00 sec)
Copier après la connexion

4. HAVING

这个子句对VT3表中的不同的组进行过滤,只作用于分组后的数据,满足HAVING条件的子句被加入到VT4表中。

mysql> SELECT
    -> *
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = &#39;mike&#39;
    -> GROUP BY
    -> a.uid
    -> HAVING
    -> count(b.oid) < 2;
+-----+------+------+------+
| uid | name | oid  | uid  |
+-----+------+------+------+
| ccc | mike |    6 | ccc  |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
2 rows in set (0.00 sec)
Copier après la connexion

5. SELECT

这个子句对SELECT子句中的元素进行处理,生成VT5表。

(5-J1)计算表达式 计算SELECT 子句中的表达式,生成VT5-J1

(5-J2)DISTINCT

寻找VT5-1中的重复列,并删掉,生成VT5-J2

如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT5是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。

mysql> SELECT
    -> a.uid,
    -> count(b.oid) AS total
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = &#39;mike&#39;
    -> GROUP BY
    -> a.uid
    -> HAVING
    -> count(b.oid) < 2;
+-----+-------+
| uid | total |
+-----+-------+
| ccc |     1 |
| ddd |     0 |
+-----+-------+
2 rows in set (0.00 sec)
Copier après la connexion

6.ORDER BY

从VT5-J2中的表中,根据ORDER BY 子句的条件对结果进行排序,生成VT6表。

注意:

唯一可使用SELECT中别名的地方;

mysql> SELECT
    -> a.uid,
    -> count(b.oid) AS total
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = &#39;mike&#39;
    -> GROUP BY
    -> a.uid
    -> HAVING
    -> count(b.oid) < 2
    -> ORDER BY
    -> total DESC;
+-----+-------+
| uid | total |
+-----+-------+
| ccc |     1 |
| ddd |     0 |
+-----+-------+
2 rows in set (0.00 sec)
Copier après la connexion

7.LIMIT

LIMIT子句从上一步得到的VT6虚拟表中选出从指定位置开始的指定行数据。

注意:

offset和rows的正负带来的影响;

当偏移量很大时效率是很低的,可以这么做:

采用子查询的方式优化,在子查询里先从索引获取到最大id,然后倒序排,再取N行结果集

采用INNER JOIN优化,JOIN子句里也优先从索引获取ID列表,然后直接关联查询获得最终结果

mysql> SELECT
    -> a.uid,
    -> count(b.oid) AS total
    -> FROM
    -> table1 AS a
    -> LEFT JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = &#39;mike&#39;
    -> GROUP BY
    -> a.uid
    -> HAVING
    -> count(b.oid) < 2
    -> ORDER BY
    -> total DESC
    -> LIMIT 1;
+-----+-------+
| uid | total |
+-----+-------+
| ccc |     1 |
+-----+-------+
1 row in set (0.00 sec)
Copier après la connexion

至此SQL的解析之旅就结束了,上图总结一下:
SQL解析顺序_MySQL


Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Analyse comparative des architectures de deep learning Analyse comparative des architectures de deep learning May 17, 2023 pm 04:34 PM

Le concept d'apprentissage profond est né de la recherche sur les réseaux de neurones artificiels. Un perceptron multicouche contenant plusieurs couches cachées est une structure d'apprentissage profond. L'apprentissage profond combine des fonctionnalités de bas niveau pour former des représentations de haut niveau plus abstraites afin de caractériser des catégories ou des caractéristiques de données. Il est capable de découvrir des représentations de fonctionnalités distribuées de données. L'apprentissage profond est un type d'apprentissage automatique, et l'apprentissage automatique est le seul moyen d'atteindre l'intelligence artificielle. Alors, quelles sont les différences entre les différentes architectures de systèmes d’apprentissage profond ? 1. Réseau entièrement connecté (FCN) Un réseau entièrement connecté (FCN) se compose d'une série de couches entièrement connectées, chaque neurone de chaque couche étant connecté à chaque neurone d'une autre couche. Son principal avantage est qu'il est « indépendant de la structure », c'est-à-dire qu'aucune hypothèse particulière concernant l'entrée n'est requise. Bien que cette agnostique structurelle rende la

Cette 'erreur' n'est pas vraiment une erreur : commencez par quatre articles classiques pour comprendre ce qui ne va pas avec le schéma d'architecture du Transformer. Cette 'erreur' n'est pas vraiment une erreur : commencez par quatre articles classiques pour comprendre ce qui ne va pas avec le schéma d'architecture du Transformer. Jun 14, 2023 pm 01:43 PM

Il y a quelque temps, un tweet soulignant l'incohérence entre le schéma d'architecture du Transformer et le code de l'article de l'équipe Google Brain "AttentionIsAllYouNeed" a déclenché de nombreuses discussions. Certains pensent que la découverte de Sebastian était une erreur involontaire, mais elle est aussi surprenante. Après tout, compte tenu de la popularité du document Transformer, cette incohérence aurait dû être mentionnée mille fois. Sebastian Raschka a déclaré en réponse aux commentaires des internautes que le code « le plus original » était effectivement cohérent avec le schéma d'architecture, mais que la version du code soumise en 2017 a été modifiée, mais que le schéma d'architecture n'a pas été mis à jour en même temps. C’est aussi la cause profonde des discussions « incohérentes ».

Comment ouvrir plusieurs comptes Toutiao ? Quelle est la démarche pour demander un compte Toutiao ? Comment ouvrir plusieurs comptes Toutiao ? Quelle est la démarche pour demander un compte Toutiao ? Mar 22, 2024 am 11:00 AM

Avec la popularité de l'Internet mobile, Toutiao est devenue l'une des plateformes d'information les plus populaires de Chine. De nombreux utilisateurs espèrent disposer de plusieurs comptes sur la plateforme Toutiao pour répondre à différents besoins. Alors, comment ouvrir plusieurs comptes Toutiao ? Cet article présentera en détail la méthode et le processus de demande d'ouverture de plusieurs comptes Toutiao. 1. Comment ouvrir plusieurs comptes Toutiao ? La méthode d'ouverture de plusieurs comptes Toutiao est la suivante : Sur la plateforme Toutiao, les utilisateurs peuvent enregistrer des comptes via différents numéros de téléphone mobile. Chaque numéro de téléphone mobile ne peut enregistrer qu'un seul compte Toutiao, ce qui signifie que les utilisateurs peuvent utiliser plusieurs numéros de téléphone mobile pour enregistrer plusieurs comptes. 2. Inscription par e-mail : utilisez différentes adresses e-mail pour enregistrer un compte Toutiao. Semblable à l'enregistrement d'un numéro de téléphone mobile, chaque adresse e-mail peut également enregistrer un compte Toutiao. 3. Connectez-vous avec un compte tiers

Multi-chemin, multi-domaine, tout compris ! Google AI publie le modèle général d'apprentissage multi-domaines MDL Multi-chemin, multi-domaine, tout compris ! Google AI publie le modèle général d'apprentissage multi-domaines MDL May 28, 2023 pm 02:12 PM

Les modèles d'apprentissage profond pour les tâches de vision (telles que la classification d'images) sont généralement formés de bout en bout avec des données provenant d'un seul domaine visuel (telles que des images naturelles ou des images générées par ordinateur). Généralement, une application qui effectue des tâches de vision pour plusieurs domaines doit créer plusieurs modèles pour chaque domaine distinct et les former indépendamment. Les données ne sont pas partagées entre différents domaines. Lors de l'inférence, chaque modèle gérera un domaine spécifique. Même s'ils sont orientés vers des domaines différents, certaines caractéristiques des premières couches entre ces modèles sont similaires, de sorte que la formation conjointe de ces modèles est plus efficace. Cela réduit la latence et la consommation d'énergie, ainsi que le coût de la mémoire lié au stockage de chaque paramètre du modèle. Cette approche est appelée apprentissage multidomaine (MDL). De plus, les modèles MDL peuvent également surpasser les modèles simples.

Quelle est l'architecture et le principe de fonctionnement de Spring Data JPA ? Quelle est l'architecture et le principe de fonctionnement de Spring Data JPA ? Apr 17, 2024 pm 02:48 PM

SpringDataJPA est basé sur l'architecture JPA et interagit avec la base de données via le mappage, l'ORM et la gestion des transactions. Son référentiel fournit des opérations CRUD et les requêtes dérivées simplifient l'accès à la base de données. De plus, il utilise le chargement paresseux pour récupérer les données uniquement lorsque cela est nécessaire, améliorant ainsi les performances.

Dix éléments de l'architecture du système d'apprentissage automatique Dix éléments de l'architecture du système d'apprentissage automatique Apr 13, 2023 pm 11:37 PM

Nous vivons une ère d’autonomisation de l’IA, et l’apprentissage automatique est un moyen technique important pour y parvenir. Alors, existe-t-il une architecture universelle de système d’apprentissage automatique ? Dans le champ cognitif des programmeurs expérimentés, tout n'est rien, notamment pour l'architecture système. Cependant, il est possible de créer une architecture de système d'apprentissage automatique évolutive et fiable si elle est applicable à la plupart des systèmes ou cas d'utilisation basés sur l'apprentissage automatique. Du point de vue du cycle de vie du machine learning, cette architecture dite universelle couvre les étapes clés du machine learning, du développement de modèles de machine learning au déploiement de systèmes de formation et de systèmes de services dans des environnements de production. Nous pouvons essayer de décrire une telle architecture de système d’apprentissage automatique à partir des dimensions de 10 éléments. 1.

1,3 ms prend 1,3 ms ! La dernière architecture de réseau neuronal mobile open source de Tsinghua, RepViT 1,3 ms prend 1,3 ms ! La dernière architecture de réseau neuronal mobile open source de Tsinghua, RepViT Mar 11, 2024 pm 12:07 PM

Adresse papier : https://arxiv.org/abs/2307.09283 Adresse code : https://github.com/THU-MIG/RepViTRepViT fonctionne bien dans l'architecture ViT mobile et présente des avantages significatifs. Ensuite, nous explorons les contributions de cette étude. Il est mentionné dans l'article que les ViT légers fonctionnent généralement mieux que les CNN légers sur les tâches visuelles, principalement en raison de leur module d'auto-attention multi-têtes (MSHA) qui permet au modèle d'apprendre des représentations globales. Cependant, les différences architecturales entre les ViT légers et les CNN légers n'ont pas été entièrement étudiées. Dans cette étude, les auteurs ont intégré des ViT légers dans le système efficace.

Quelle est la courbe d'apprentissage de l'architecture du framework Golang ? Quelle est la courbe d'apprentissage de l'architecture du framework Golang ? Jun 05, 2024 pm 06:59 PM

La courbe d'apprentissage de l'architecture du framework Go dépend de la familiarité avec le langage Go et le développement back-end ainsi que de la complexité du framework choisi : une bonne compréhension des bases du langage Go. Il est utile d’avoir une expérience en développement back-end. Les cadres qui diffèrent en complexité entraînent des différences dans les courbes d'apprentissage.

See all articles