Discuter du problème de la perte de précision dans Golang
Golang est un langage fortement typé et rencontrera le problème de perte de précision lorsqu'il s'agira de nombres à virgule flottante. Cet article explorera le problème de la perte de précision dans Golang sous les aspects suivants :
- Qu'est-ce que la perte de précision dans Golang
Lorsque vous utilisez Golang pour traiter des nombres à virgule flottante, la représentation des décimales n'est pas nécessairement certaine en raison des paramètres internes de l'ordinateur. la représentation est exacte. Par exemple, la représentation binaire de 0,1 est 0,00011001100110011001100..., qui ne peut enregistrer qu'un certain nombre de décimales lorsqu'elle est représentée en interne par l'ordinateur. Cela conduit au fait que lors de l'exécution d'une série de calculs à virgule flottante, la précision des décimales peut être affectée, ce qui entraîne un problème de perte de précision.
- Exemple de perte de précision dans Golang
Voyons un exemple :
a := 0.1 b := 0.2 c := a + b fmt.Println(c) // 输出:0.30000000000000004
Dans cet exemple, nous voulons ajouter 0,1 et 0,2 pour obtenir 0,3. Mais lorsque nous exécutons le programme, nous constatons que le résultat devient une valeur décimale approximative de 0,30000000000000004. En effet, Golang utilise la norme IEEE 754 et utilise le binaire pour représenter les nombres à virgule flottante. Cependant, le binaire ne peut pas représenter avec précision les décimales telles que 0,1 et 0,2, ce qui entraînera une accumulation d'erreurs.
- Comment éviter la perte de précision dans Golang
Pour éviter les problèmes de perte de précision dans Golang, nous pouvons utiliser quelques astuces et bibliothèques.
Tout d'abord, nous pouvons utiliser le type Decimal au lieu du float64 par défaut. go-lang-Decimal est une bibliothèque de calcul décimal de haute précision qui utilise des chaînes pour représenter des nombres à virgule flottante, évitant ainsi le problème de perte de précision dans les nombres binaires à virgule flottante. Voici un exemple utilisant la bibliothèque go-lang-Decimal :
a, _ := decimal.NewFromString("0.1") b, _ := decimal.NewFromString("0.2") c := a.Add(b) fmt.Println(c) // 输出:0.3
En plus du type Decimal, nous pouvons également utiliser le type Rat dans le package math/big pour effectuer des opérations fractionnaires. Le type Rat est un type de fraction qui peut garantir l'exactitude des décimales. Voici un exemple d'utilisation du type Rat :
a := big.NewRat(1, 10) b := big.NewRat(2, 10) c := big.NewRat(0, 1) c.Add(a, b) fmt.Println(c.FloatString(1)) // 输出:0.3
De plus, nous pouvons également utiliser certaines bibliothèques de calcul de haute précision, telles que go-math-big, go-floating-point, etc.
Résumé
Le problème de la perte de précision dans Golang est un problème inévitable, mais nous pouvons utiliser certaines techniques et bibliothèques pour éviter ce problème. Même si ces solutions peuvent augmenter certains coûts de développement, elles peuvent nous fournir des résultats de calcul plus fiables.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

OpenSSL, en tant que bibliothèque open source largement utilisée dans les communications sécurisées, fournit des algorithmes de chiffrement, des clés et des fonctions de gestion des certificats. Cependant, il existe des vulnérabilités de sécurité connues dans sa version historique, dont certaines sont extrêmement nocives. Cet article se concentrera sur les vulnérabilités et les mesures de réponse communes pour OpenSSL dans Debian Systems. DebianopenSSL CONNUTS Vulnérabilités: OpenSSL a connu plusieurs vulnérabilités graves, telles que: la vulnérabilité des saignements cardiaques (CVE-2014-0160): cette vulnérabilité affecte OpenSSL 1.0.1 à 1.0.1F et 1.0.2 à 1.0.2 Versions bêta. Un attaquant peut utiliser cette vulnérabilité à des informations sensibles en lecture non autorisées sur le serveur, y compris les clés de chiffrement, etc.

L'article explique comment utiliser l'outil PPROF pour analyser les performances GO, notamment l'activation du profilage, la collecte de données et l'identification des goulots d'étranglement communs comme le processeur et les problèmes de mémoire. COMMANDE: 159

L'article traite des tests d'unité d'écriture dans GO, couvrant les meilleures pratiques, des techniques de moquerie et des outils pour une gestion efficace des tests.

La bibliothèque utilisée pour le fonctionnement du numéro de point flottante dans le langage go présente comment s'assurer que la précision est ...

Problème de threading de file d'attente dans Go Crawler Colly explore le problème de l'utilisation de la bibliothèque Crawler Crawler dans le langage Go, les développeurs rencontrent souvent des problèmes avec les threads et les files d'attente de demande. � ...

L'article discute de la gestion des dépendances des modules GO via Go.mod, couvrant les spécifications, les mises à jour et la résolution des conflits. Il met l'accent sur les meilleures pratiques telles que le versioning sémantique et les mises à jour régulières.

Chemin d'apprentissage du backend: le parcours d'exploration du front-end à l'arrière-end en tant que débutant back-end qui se transforme du développement frontal, vous avez déjà la base de Nodejs, ...

L'article discute de l'utilisation de tests basés sur la table dans GO, une méthode qui utilise un tableau des cas de test pour tester les fonctions avec plusieurs entrées et résultats. Il met en évidence des avantages comme une amélioration de la lisibilité, une duplication réduite, l'évolutivité, la cohérence et un
