


ChatGPT contre GPT-3 contre GPT-4 n'est qu'un combat interne entre les familles de chatbots
Lorsqu'ils expliquent les capacités de copie publicitaire et de génération de bannières de SoMin, les gens demandent souvent si GPT-3 a été remplacé par ChatGPT ou s'il fonctionne toujours dans un mode obsolète.
Lorsqu'ils expliquent les capacités de copie publicitaire et de génération de bannières de SoMin, les gens demandent souvent si GPT-3 a été remplacé par ChatGPT ou s'il fonctionne toujours dans un mode obsolète. "Nous ne l'avons pas fait et n'envisageons pas de le faire", a répondu un porte-parole de SoMin, même si le chatbot ChatGPT lancé par OpenAI est en plein essor. Cela surprend souvent le client, alors voici une explication des raisons pour lesquelles il donnerait une telle réponse.
Avoir une place dans les modèles d'intelligence artificielle
GPT-2, GPT-3, ChatGPT et le GPT-4 récemment lancé appartiennent tous au même type de modèle d'intelligence artificielle - Transformer. Cela signifie que, contrairement aux modèles d’apprentissage automatique des générations précédentes, ils sont formés pour accomplir une tâche plus uniforme, de sorte qu’ils n’ont pas besoin d’être recyclés pour chaque tâche spécifique afin de produire des résultats exploitables. Ce dernier explique leur taille massive (175 milliards de paramètres dans le cas de GPT-3), alors qu'un modèle pourrait avoir besoin de « mémoriser l'intégralité d'Internet » pour être suffisamment flexible pour basculer entre différents éléments de données en fonction des entrées de l'utilisateur. Le modèle est alors capable de générer des résultats lorsque l'utilisateur saisit une question de requête, une description de la tâche et quelques exemples (comme si vous demandiez à un bibliothécaire des livres d'intérêt). Cette approche est appelée « apprentissage en quelques étapes » et est devenue récemment une tendance en fournissant une contribution aux modèles Transformer modernes.
Mais est-il toujours nécessaire de tout savoir sur Internet pour accomplir la tâche en cours ? Bien sûr que non - dans de nombreux cas, comme ChatGPT, de grands (millions) échantillons de données spécifiques à la tâche sont nécessaires, ces échantillons permettront au modèle pour lancer le processus « Reinforcement Learning from Human Feedback (RLHF) ». À son tour, le RLHF développera un processus de formation collaboratif entre l’IA et les humains pour former davantage les modèles d’IA afin de produire des conversations de type humain. Par conséquent, ChatGPT excelle non seulement dans le scénario du chatbot, mais aide également les gens à rédiger du contenu court (comme des poèmes ou des paroles) ou du contenu long (comme des essais lorsque les gens ont besoin d'obtenir des réponses rapidement, en termes simples ou) ; connaissances approfondies Expliquer des sujets complexes ; proposer un brainstorming, de nouveaux sujets et idées utiles dans le processus de création, soutenir le service commercial dans la communication personnalisée, comme la génération d'e-mails auxquels répondre.
Bien qu'il soit techniquement possible pour un grand modèle de Transformer de tenter d'accomplir ces tâches, il est peu probable que cela soit accompli par ChatGPT ou même GPT-4 - en effet, ChatGPT et les autres Transformers d'OpenAI ont une connaissance très limitée de ce qui se passe dans le monde, car ce sont des modèles pré-entraînés, de sorte que leurs données ne sont pas mises à jour assez fréquemment en raison des exigences informatiques très élevées du recyclage des modèles. C'est probablement la plus grande lacune de tous les modèles pré-entraînés produits par OpenAI (et par n'importe qui d'autre) à ce jour. Un problème plus important est spécifique à ChatGPT : contrairement à GPT-3, il a été formé sur un ensemble de données conversationnelles très ciblées, ce n'est donc que dans les tâches conversationnelles que ChatGPT surpasse ses prédécesseurs, tout en accomplissant d'autres tâches humaines. moins avancé.
Une famille nombreuse et croissante de modèles de langage
Les gens savent désormais que ChatGPT n'est qu'une version plus petite et plus spécifique de GPT-3, mais cela signifie-t-il qu'il y aura davantage de ces modèles dans un avenir proche : pour la commercialisation de MarGPT, AdGPT pour la publicité numérique, MedGPT pour répondre aux questions médicales ?
C'est possible et voici pourquoi : Lorsque la société SoMin a soumis une demande pour accéder à GPT-3 Beta, il suffit de la remplir. Un long formulaire de candidature a été remis expliquant en détail le logiciel actuel. qui serait construit, mais il lui a été demandé d'accepter de fournir des commentaires sur la façon dont le modèle était utilisé au quotidien et sur les résultats reçus. La société OpenAI a fait cela pour une raison, principalement parce qu'il s'agissait d'un projet de recherche et qu'elle avait besoin d'informations commerciales sur les meilleures applications du modèle, et elle l'a financé en échange de la chance de participer à cette grande révolution de l'intelligence artificielle. Les applications Chatbot semblent être l’une des plus populaires, donc ChatGPT vient en premier. ChatGPT est non seulement plus petit (20 milliards de paramètres contre 175 milliards de paramètres), mais aussi plus rapide et plus précis que GPT-3 pour résoudre les tâches conversationnelles - pour un produit d'IA à faible coût et de haute qualité. Pour moi, c'est une entreprise parfaite cas.
Alors, en matière d’IA générative, est-ce qu’il vaut mieux être plus grand ? La réponse est que cela dépend. Lorsqu’on construit un modèle d’apprentissage général capable d’accomplir de nombreuses tâches, la réponse est oui, plus c’est gros, mieux c’est, comme en témoignent les avantages de GPT-3 par rapport à GPT-2 et à d’autres prédécesseurs. Mais lorsque l’on veut bien effectuer une tâche spécifique, comme le chatbot dans ChatGPT, alors la concentration sur les données et un processus de formation approprié sont bien plus importants que le modèle et la taille des données. C'est pourquoi chez SoMin, au lieu d'utiliser ChatGPT pour générer des textes et des bannières, des données spécifiques liées aux publicités numériques sont utilisées pour guider GPT-3 afin de créer un meilleur contenu pour les nouvelles publicités qui n'ont pas encore été vues.
Alors, on pourrait se demander, comment l'avenir de l'IA générative va-t-il se développer ? La multimodalité sera l'une des avancées inévitables que les gens verront dans le prochain GPT-4, comme l'a mentionné le PDG d'OpenAI, Sam Altman, dans son discours. Dans le même temps, Altman a également dissipé la rumeur selon laquelle le modèle comporte 100 000 milliards de paramètres. Par conséquent, les gens savent que plus grand ne signifie pas toujours meilleur dans ce type de modèle d’intelligence artificielle.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Le DALL-E 3 a été officiellement introduit en septembre 2023 en tant que modèle considérablement amélioré par rapport à son prédécesseur. Il est considéré comme l’un des meilleurs générateurs d’images IA à ce jour, capable de créer des images avec des détails complexes. Cependant, au lancement, c'était exclu

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

L'application ChatGPT Mac d'Open AI est désormais accessible à tous, après avoir été limitée aux seuls utilisateurs disposant d'un abonnement ChatGPT Plus au cours des derniers mois. L'application s'installe comme n'importe quelle autre application Mac native, à condition que vous disposiez d'un Apple S à jour.

L’Open AI fait enfin son incursion dans la recherche. La société de San Francisco a récemment annoncé un nouvel outil d'IA doté de capacités de recherche. Rapporté pour la première fois par The Information en février de cette année, le nouvel outil s'appelle à juste titre SearchGPT et propose un c
