Table des matières
1 Introduction
2 Connaissances de base
3 Qu'est-ce qu'un ordre de tâches ?
4 Comment modéliser des instructions ?
5 Applications
Maison Périphériques technologiques IA Quelle est l'instruction d'apprentissage derrière ChatGPT ? PSU publie sa première revue complète de « l'apprentissage pédagogique »

Quelle est l'instruction d'apprentissage derrière ChatGPT ? PSU publie sa première revue complète de « l'apprentissage pédagogique »

Apr 07, 2023 pm 07:51 PM
ai 自然语言

La sémantique des tâches peut être représentée par un ensemble d'exemples d'entrée-sortie ou une instruction textuelle. Les méthodes traditionnelles d'apprentissage automatique par traitement du langage naturel (NLP) reposent principalement sur la disponibilité d'ensembles d'échantillons à grande échelle spécifiques à des tâches.

Mais deux problèmes se posent : Premièrement, la collecte d'exemples étiquetés spécifiques à une tâche ne convient pas aux scénarios dans lesquels la tâche peut être trop complexe ou coûteuse à annoter, ou où le système doit traiter de nouvelles tâches immédiatement. convivial, car les utilisateurs finaux préféreront peut-être fournir une description de la tâche avant d'utiliser le système plutôt qu'un ensemble d'exemples.

Par conséquent, la communauté s'intéresse de plus en plus à un nouveau paradigme de recherche de supervision en PNL : Apprendre à partir des instructions de tâches. Malgré des progrès impressionnants, la communauté est toujours confrontée à certains problèmes communs.

Cet article tente de résumer la recherche actuelle sur l'apprentissage de l'instruction sous les aspects suivants :

(1) Qu'est-ce qu'une instruction de tâche et quels types d'instructions existent ?

(2) Comment modéliser des instructions ?

(3) Quels facteurs affectent et expliquent l'exécution des instructions ?

(4) Quels autres défis existent dans la directive ?

À notre connaissance, il s'agit de la première étude complète des commandes de texte.

Quelle est linstruction dapprentissage derrière ChatGPT ? PSU publie sa première revue complète de « lapprentissage pédagogique »

Adresse papier : https://arxiv.org/pdf/2303.10475v2.pdf

1 Introduction

L'un des objectifs de l'intelligence artificielle est de construire un système qui peut universellement comprendre et résoudre un nouveau système de tâches. Il est peu probable que les exemples étiquetés, en tant que représentations de tâches courantes, soient largement disponibles, voire inexistants. Alors, existe-t-il d’autres représentations de tâches qui peuvent contribuer à la compréhension des tâches ? Les instructions de tâche fournissent une autre dimension de supervision pour exprimer la sémantique des tâches, et les instructions contiennent souvent une connaissance plus abstraite et complète de la tâche cible qu'un seul exemple étiqueté.

L'apprentissage pédagogique s'inspire de l'apprentissage humain typique de nouvelles tâches, Par exemple, un enfant peut bien résoudre une nouvelle tâche mathématique en apprenant à partir d'instructions et de quelques exemples. Ce nouveau paradigme d’apprentissage a récemment attiré l’attention des communautés d’apprentissage automatique et de PNL.

Comme le montre la figure 1, grâce à la disponibilité d'instructions de tâches, des systèmes peuvent être rapidement construits pour gérer de nouvelles tâches, en particulier lorsque les annotations spécifiques aux tâches sont rares.

Quelle est linstruction dapprentissage derrière ChatGPT ? PSU publie sa première revue complète de « lapprentissage pédagogique »

Quand il s'agit d'instructions de tâches, la plupart d'entre nous associent d'abord le concept à des invites - en utilisant un modèle court pour reformater la nouvelle entrée dans un problème de modélisation de langage afin de répondre au démarrage de PLM. Bien que les indices soient omniprésents dans la classification de textes, la traduction automatique, etc., les indices ne sont qu'un cas particulier d'instructions. Cet article fournit une vision complète et plus large de la recherche en PNL axée sur l’enseignement. Plus précisément, nous essayons de répondre aux questions suivantes :

  • Qu'est-ce qu'une instruction de tâche et quels types d'instructions existent 
  • Étant donné une instruction de tâche, comment peut-elle être codée pour aider à accomplir la tâche cible ? Quels facteurs (tels que la taille du modèle, le nombre de tâches) affectent les performances des systèmes axés sur l'instruction et comment concevoir de meilleures instructions Quelles applications l'apprentissage de l'instruction peut-il apporter ? Quels défis existent dans l'apprentissage de l'instruction et les orientations futures ?
  • Au meilleur de nos connaissances, il s'agit du premier article examinant l'apprentissage des instructions textuelles. Par rapport à certaines enquêtes existantes qui se concentrent sur des instructions contextuelles spécifiques, telles que des invites, des démonstrations entrée par sortie ou un raisonnement, nous proposons une perspective plus large qui relie différentes recherches dans ce domaine de manière organisée. J'espère que cet article pourra présenter une meilleure histoire d'apprentissage pédagogique et attirer davantage de collègues pour étudier ce problème difficile de l'intelligence artificielle. Nous avons également publié une liste de lectures correspondante pour cette enquête.

    2 Connaissances de base

    Pour l'apprentissage basé sur les tâches, l'objectif est de conduire le système pour obtenir le résultat d'une entrée donnée en suivant les instructions. Par conséquent, un ensemble de données se compose de trois éléments :

    Input (X) : l'entrée de l'instance ; il peut s'agir d'un morceau de texte (comme une classification de sentiment) ou d'un ensemble de texte (comme une implication de texte) , question réponse, etc.).

    Output (Y) : La sortie de l'instance ; dans un problème de classification, il peut s'agir d'une ou plusieurs étiquettes prédéfinies ; dans une tâche de génération de texte, il peut s'agir de n'importe quel texte ouvert.

    Modèle (T) : Un modèle de texte qui tente d'exprimer le sens d'une tâche seule, ou de servir de pont entre X et y. T n'est peut-être pas encore une structure de composants.

    3 Qu'est-ce qu'un ordre de tâches ?

    Différents types d'instructions textuelles ont été utilisées dans des tâches PNL précédentes à tir zéro et à quelques tirs, telles que des invites, des instructions Amazon Mechanical Turk, complétées par des instructions démontrées et des explications de la chaîne de pensée. Différentes instructions ont été conçues à l'origine pour différents objectifs (par exemple, les instructions Mturk ont ​​été créées à l'origine pour la compréhension de l'annotateur humain, les invites étaient destinées au contrôle du PLM). Dans cette section, comme le montre la figure 2, nous résumons d'abord ces instructions en trois catégories qui effectuent différentes combinaisons de T, définition formelle.

    3.1 I=T^+Y : instructions basées sur l'implication

    Une solution traditionnelle pour gérer les tâches de classification consiste à convertir l'étiquette cible en index et à laisser le modèle décider à quel index appartient l'entrée. Ce paradigme se concentre sur le codage de la sémantique d’entrée tout en perdant la sémantique des étiquettes. Afin que le système reconnaisse de nouvelles étiquettes sans s'appuyer sur un grand nombre d'exemples étiquetés, Yin et al proposent d'établir une hypothèse pour chaque étiquette - ensuite, la valeur de vérité dérivée de l'étiquette est convertie en valeur de vérité de l'étiquette déterminée. hypothèse. Comme le montre le tableau 1, cette méthode est intégrée à l'instruction I et combine le modèle T avec l'étiquette Y pour interpréter chaque étiquette cible Y. Puisque ce paradigme satisfait naturellement au format de l'implication textuelle (TE, où les entrées de tâches et les instructions peuvent être considérées respectivement comme des prémisses et des hypothèses), ces types d'instructions sont appelés « instructions orientées implication ».

    La méthode d'apprentissage des instructions orientée implication présente les quatre avantages suivants :

    (1) Maintient la sémantique des étiquettes, de sorte que l'encodage d'entrée et l'encodage de sortie reçoivent la même attention lors de la modélisation des relations d'entrée-sortie

    ( 2) Forme un processus de raisonnement unifié - implication textuelle - pour gérer divers problèmes de PNL

    (3) Il crée des opportunités pour tirer parti de la supervision indirecte des ensembles de données TE existants, de sorte que les modèles TE pré-entraînés fonctionnent sur ces cibles ; tâches sans ajustement spécifique à la tâche ;

    (4) Étendre le problème original de classification d'étiquettes en ensemble fermé à un domaine ouvert avec peu ou même aucun échantillon de classe générique Le problème de la reconnaissance d'étiquettes de forme ouverte.

    Par conséquent, il est largement utilisé dans diverses tâches de classification en quelques coups/zéro coup, telles que la classification de sujets, d'émotions, de postures, de types d'entités et de relations entre entités.

    Quelle est linstruction dapprentissage derrière ChatGPT ? PSU publie sa première revue complète de « lapprentissage pédagogique »

    3.2 I=T^ + Sur la saisie d'une tâche (invite de préfixe) ou un modèle de question cloze (invite cloze). Il est principalement utilisé pour interroger des réponses intermédiaires (qui peuvent ensuite être converties en réponses finales) à partir de modèles linguistiques pré-entraînés (PLM).

    Étant donné que la saisie rapide répond aux objectifs de pré-formation du PLM, par exemple, la saisie de style Gestalt répond à l'objectif de modélisation du langage masqué, elle permet de se débarrasser de la dépendance à l'égard du réglage fin supervisé traditionnel et réduit considérablement le coût de annotation manuelle. En conséquence, l’apprentissage rapide a obtenu des résultats impressionnants sur un grand nombre de tâches PNL précédentes, telles que la réponse aux questions, la traduction automatique, l’analyse des sentiments, l’implication de texte et la reconnaissance d’entités nommées.

    Quelle est linstruction dapprentissage derrière ChatGPT ? PSU publie sa première revue complète de « lapprentissage pédagogique »

    3.3 Instructions centrées sur l'humain

    Les instructions centrées sur l'humain font essentiellement référence aux instructions utilisées pour le crowdsourcing sur les plateformes d'annotation humaine (telles que les instructions d'Amazon MTurk). Contrairement aux instructions orientées vers l'humain, les instructions orientées vers l'humain sont généralement des informations textuelles lisibles, descriptives et spécifiques à une tâche, composées de titres de tâches, de catégories, de définitions, de choses à éviter, etc. Par conséquent, les instructions centrées sur l’humain sont plus conviviales et peuvent idéalement être appliquées à presque toutes les tâches complexes de PNL.

    4 Comment modéliser des instructions ?

    Dans cette section, nous résumons plusieurs des stratégies de modélisation les plus populaires pour l'apprentissage de l'instruction. Dans l'ensemble, cet article présente quatre schémas de modélisation différents : pour les premiers systèmes basés sur l'apprentissage automatique, (1) les stratégies basées sur un analyseur sémantique sont une méthode courante pour coder les instructions avec l'avènement des réseaux de neurones et des modèles de langage pré-entraînés émergents (2) ; ) les modèles d'apprentissage basés sur des modèles de repères et (3) les modèles d'apprentissage basés sur des instructions de préfixes sont devenus récemment deux paradigmes privilégiés, (4) les méthodes basées sur les hyperréseaux ont également suscité un plus grand intérêt ;

    5 Applications

    5.1 Interaction homme-machine

    Les commandes textuelles peuvent être naturellement considérées comme une forme d'interaction homme-machine. De nombreux travaux antérieurs ont utilisé des instructions en langage naturel pour « ordonner » aux ordinateurs d'effectuer diverses tâches du monde réel.

    Pour les tâches non PNL (multimodales), la plupart se concentrent sur l'apprentissage des langues basé sur l'environnement, c'est-à-dire amener l'agent à associer des instructions en langage naturel à l'environnement et à réagir en conséquence, par exemple à partir d'images/vidéos. Sélectionnez les objets mentionnés, suivez. instructions de navigation, tracer les traces correspondantes sur la carte, jouer à des jeux de football/cartes selon des règles données, générer des retransmissions sportives en temps réel, contrôler des logiciels et interroger des bases de données externes. Dans le même temps, les instructions sont également largement utilisées pour faciliter la communication avec les systèmes afin de résoudre les tâches de PNL, telles que suivre des instructions pour manipuler des chaînes, classer les e-mails en fonction d'une explication donnée et générer du texte en code.

    Ces dernières années, de plus en plus de recherches tendent à concevoir le processus de communication homme-machine de manière itérative et modulaire. Par exemple, Li et al. ont construit un système pour aider les utilisateurs à gérer les tâches quotidiennes (par exemple, commander un café ou demander un Uber). Grâce à l'interface graphique conviviale, le système peut poser de manière itérative des questions sur les tâches et les utilisateurs peuvent continuellement affiner leurs instructions pour éviter des descriptions peu claires ou des concepts vagues. De même, Dwivedi-Yu et al. ont proposé un benchmark pour guider le PLM de manière itérative afin d'améliorer le texte, où chaque itération utilise uniquement un court ensemble d'instructions avec un objectif précis (par exemple, « simplifier le texte » ou « rendre le texte neutre »). De plus, Chakrabarty et al. ont construit un système d'écriture de poésie collaborative dans lequel les utilisateurs peuvent initialement fournir une instruction ambiguë (par exemple, « Écrire un poème sur les gâteaux »), puis l'affiner progressivement avec plus de détails en observant les instructions intermédiaires du modèle (. par exemple, "Contient le mot -chocolat"). Pendant ce temps, Mishra et Nouri ont proposé un système de génération de biographie qui collecte progressivement les informations personnelles nécessaires auprès de l'utilisateur (en posant des questions pour guider l'utilisateur dans des scénarios conversationnels) et génère finalement une biographie basée sur des paragraphes. En réponse au problème des utilisateurs non experts qui ont des difficultés à rédiger des instructions complètes en une seule fois, l'adoption d'un paradigme de conception itérative et modulaire dans la conception de systèmes d'intelligence artificielle basés sur des instructions peut guider les utilisateurs à enrichir progressivement les instructions de tâches, atténuant ainsi efficacement la réflexion des utilisateurs. besoins. Rendre le système plus orienté vers l’utilisateur. Cet article souligne l’importance de cette branche de travail compte tenu de sa valeur pratique.

    5.2 Amélioration des données et des fonctionnalités

    Les ordres de tâches sont considérés comme une source indirecte de supervision, qui contiennent parfois des règles superficielles et arbitraires. Ces règles sont également appelées fonctions d'étiquetage et peuvent être appliquées directement aux annotations (par exemple, la phrase « un prix très juste » est sentimentalement positive car « le mot prix est directement précédé de juste »). Par conséquent, certains travaux existants utilisent également des instructions comme supervision à distance pour effectuer des améliorations de données ou de fonctionnalités. Par exemple, Srivastava et al. utilisent des analyseurs sémantiques pour convertir les explications en langage naturel en formes logiques et les appliquer à toutes les instances de l'ensemble de données afin de générer des fonctionnalités binaires supplémentaires. Wang et al. ont utilisé l'interprétation d'étiquettes pour annoter automatiquement le corpus d'origine et former un classificateur sur les données bruitées générées. En plus de l'expansion directe, Su et al. ont également utilisé des instructions de tâches pour enrichir la représentation du modèle et parvenir à une forte généralisation inter-tâches. Plus précisément, ils ont formé un modèle d'intégration (encodeur unique) sur un ensemble de données d'instructions différent avec un apprentissage contrastif, puis ont utilisé ce modèle pour générer des représentations spécifiques à des tâches basées sur des instructions pour des tâches invisibles en aval.

    5.3 Modèle de langage universel

    Selon la définition de l'intelligence générale artificielle (AGI), un « modèle universel » est généralement un système capable d'effectuer différentes tâches et évolutif dans un environnement changeant. ira bien au-delà de ce que ses créateurs attendaient initialement. Bien que spécifique au domaine de la PNL, le modèle de langage général doit être un excellent assistant multitâche capable de gérer avec compétence une variété de tâches PNL du monde réel et différents langages de manière totalement zéro/quelques coups. Étant donné que de nombreux travaux existants démontrent la capacité surprenante d’utiliser des instructions dans la généralisation de tâches croisées, cette instruction est susceptible de constituer une avancée majeure vers cet objectif ultime.

    Il convient de noter que deux applications récentes notables d'instructions, à savoir InstructGPT et ChatGPT, indiquent également un grand pas vers la création de modèles de langage généraux. Cependant, contrairement à d'autres travaux qui adoptent principalement l'apprentissage pédagogique, ChatGPT adopte également d'autres composants tels que l'apprentissage par renforcement avec feedback humain (RLHF). Bien que la réponse à la question « quel composant contribue le plus aux excellents résultats de ChatGPT » reste vague et nécessite une enquête plus approfondie, nous introduisons quelques travaux récents pour mettre en évidence le rôle critique de l'apprentissage de l'instruction. Par exemple, Chung et al. ont mené des expériences approfondies pour évaluer l’alignement des préférences humaines pour PaLM. Ils ont constaté que même sans aucune rétroaction humaine, le réglage fin de l'enseignement réduisait considérablement les toxicités de la génération ouverte de PaLM, telles que les préjugés sexistes et professionnels. De plus, d’autres travaux ont également utilisé uniquement des conseils créatifs plutôt que des commentaires humains et ont obtenu des résultats multitâches significatifs. Bien que ChatGPT présente encore de nombreux aspects insatisfaisants et soit encore loin d'être un modèle de langage universel, nous espérons que l'objectif de l'AGI pourra continuer à être promu grâce à l'adoption et au développement de technologies plus puissantes, notamment l'apprentissage pédagogique.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment implémenter le tri des fichiers par Debian Readdir Comment implémenter le tri des fichiers par Debian Readdir Apr 13, 2025 am 09:06 AM

Dans Debian Systems, la fonction ReadDir est utilisée pour lire le contenu du répertoire, mais l'ordre dans lequel il revient n'est pas prédéfini. Pour trier les fichiers dans un répertoire, vous devez d'abord lire tous les fichiers, puis les trier à l'aide de la fonction QSORT. Le code suivant montre comment trier les fichiers de répertoire à l'aide de ReadDir et QSort dans Debian System: # include # include # include # include # include // Fonction de comparaison personnalisée, utilisée pour qsortintCompare (constvoid * a, constvoid * b) {returnstrcmp (* (

Comment optimiser les performances de Debian Readdir Comment optimiser les performances de Debian Readdir Apr 13, 2025 am 08:48 AM

Dans Debian Systems, les appels du système ReadDir sont utilisés pour lire le contenu des répertoires. Si ses performances ne sont pas bonnes, essayez la stratégie d'optimisation suivante: simplifiez le nombre de fichiers d'annuaire: divisez les grands répertoires en plusieurs petits répertoires autant que possible, en réduisant le nombre d'éléments traités par appel ReadDir. Activer la mise en cache de contenu du répertoire: construire un mécanisme de cache, mettre à jour le cache régulièrement ou lorsque le contenu du répertoire change et réduire les appels fréquents à Readdir. Les caches de mémoire (telles que Memcached ou Redis) ou les caches locales (telles que les fichiers ou les bases de données) peuvent être prises en compte. Adoptez une structure de données efficace: si vous implémentez vous-même la traversée du répertoire, sélectionnez des structures de données plus efficaces (telles que les tables de hachage au lieu de la recherche linéaire) pour stocker et accéder aux informations du répertoire

Comment définir le niveau de journal Debian Apache Comment définir le niveau de journal Debian Apache Apr 13, 2025 am 08:33 AM

Cet article décrit comment ajuster le niveau de journalisation du serveur Apacheweb dans le système Debian. En modifiant le fichier de configuration, vous pouvez contrôler le niveau verbeux des informations de journal enregistrées par Apache. Méthode 1: Modifiez le fichier de configuration principal pour localiser le fichier de configuration: le fichier de configuration d'Apache2.x est généralement situé dans le répertoire / etc / apache2 /. Le nom de fichier peut être apache2.conf ou httpd.conf, selon votre méthode d'installation. Modifier le fichier de configuration: Ouvrez le fichier de configuration avec les autorisations racine à l'aide d'un éditeur de texte (comme Nano): Sutonano / etc / apache2 / apache2.conf

Comment Debian OpenSSL empêche les attaques de l'homme au milieu Comment Debian OpenSSL empêche les attaques de l'homme au milieu Apr 13, 2025 am 10:30 AM

Dans Debian Systems, OpenSSL est une bibliothèque importante pour le chiffrement, le décryptage et la gestion des certificats. Pour empêcher une attaque d'homme dans le milieu (MITM), les mesures suivantes peuvent être prises: utilisez HTTPS: assurez-vous que toutes les demandes de réseau utilisent le protocole HTTPS au lieu de HTTP. HTTPS utilise TLS (Protocole de sécurité de la couche de transport) pour chiffrer les données de communication pour garantir que les données ne sont pas volées ou falsifiées pendant la transmission. Vérifiez le certificat de serveur: vérifiez manuellement le certificat de serveur sur le client pour vous assurer qu'il est digne de confiance. Le serveur peut être vérifié manuellement via la méthode du délégué d'URLSession

Méthode d'installation du certificat de Debian Mail Server SSL Méthode d'installation du certificat de Debian Mail Server SSL Apr 13, 2025 am 11:39 AM

Les étapes pour installer un certificat SSL sur le serveur de messagerie Debian sont les suivantes: 1. Installez d'abord la boîte à outils OpenSSL, assurez-vous que la boîte à outils OpenSSL est déjà installée sur votre système. Si ce n'est pas installé, vous pouvez utiliser la commande suivante pour installer: Sudoapt-getUpDaSuDoapt-getInstallOpenSSL2. Générer la clé privée et la demande de certificat Suivant, utilisez OpenSSL pour générer une clé privée RSA 2048 bits et une demande de certificat (RSE): OpenSS

Comment Debian Readdir s'intègre à d'autres outils Comment Debian Readdir s'intègre à d'autres outils Apr 13, 2025 am 09:42 AM

La fonction ReadDir dans le système Debian est un appel système utilisé pour lire le contenu des répertoires et est souvent utilisé dans la programmation C. Cet article expliquera comment intégrer ReadDir avec d'autres outils pour améliorer sa fonctionnalité. Méthode 1: combinant d'abord le programme de langue C et le pipeline, écrivez un programme C pour appeler la fonction readdir et sortir le résultat: # include # include # include # includeIntmain (intargc, char * argv []) {dir * dir; structDirent * entrée; if (argc! = 2) {

Conseils de configuration du pare-feu Debian Mail Server Conseils de configuration du pare-feu Debian Mail Server Apr 13, 2025 am 11:42 AM

La configuration du pare-feu d'un serveur de courrier Debian est une étape importante pour assurer la sécurité du serveur. Voici plusieurs méthodes de configuration de pare-feu couramment utilisées, y compris l'utilisation d'iptables et de pare-feu. Utilisez les iptables pour configurer le pare-feu pour installer iptables (sinon déjà installé): Sudoapt-getUpDaSuDoapt-getinstalliptableView Règles actuelles iptables: Sudoiptable-L Configuration

Comment apprendre Debian Syslog Comment apprendre Debian Syslog Apr 13, 2025 am 11:51 AM

Ce guide vous guidera pour apprendre à utiliser Syslog dans Debian Systems. Syslog est un service clé dans les systèmes Linux pour les messages du système de journalisation et du journal d'application. Il aide les administrateurs à surveiller et à analyser l'activité du système pour identifier et résoudre rapidement les problèmes. 1. Connaissance de base de Syslog Les fonctions principales de Syslog comprennent: la collecte et la gestion des messages journaux de manière centralisée; Prise en charge de plusieurs formats de sortie de journal et des emplacements cibles (tels que les fichiers ou les réseaux); Fournir des fonctions de visualisation et de filtrage des journaux en temps réel. 2. Installer et configurer syslog (en utilisant RSYSLOG) Le système Debian utilise RSYSLOG par défaut. Vous pouvez l'installer avec la commande suivante: SudoaptupDatesud

See all articles