


Comment intégrer la technologie de reconnaissance faciale dans les applications mobiles
La technologie de reconnaissance faciale est une technologie utilisée pour reconnaître les visages, les comparer et les faire correspondre avec des images de visage pré-stockées. La technologie de reconnaissance faciale utilise principalement la technologie de vision par ordinateur et de reconnaissance de formes pour identifier les visages, et son objectif principal est d'assurer la sécurité et de faciliter l'authentification de l'identité.
La technologie de reconnaissance faciale comprend généralement les étapes suivantes : collecte d'images, détection de visages, extraction des traits du visage, comparaison, reconnaissance et authentification.
Lors de la collecte d'images, vous pouvez utiliser des appareils photo, des scanners et d'autres équipements et les transférer vers des ordinateurs ou d'autres appareils pour les traiter. Par la suite, la technologie de reconnaissance faciale est utilisée pour détecter le visage dans l’image et l’extraire de l’image. En même temps, les points caractéristiques, la texture et d’autres caractéristiques du visage sont extraits pour former un vecteur de caractéristiques du visage. Enfin, ces vecteurs de caractéristiques sont comparés et mis en correspondance avec des vecteurs de caractéristiques de visage connus stockés dans la base de données pour identifier ou vérifier l'identité du visage.
La technologie de reconnaissance faciale a un large éventail d'applications, telles que la surveillance de la sécurité, l'authentification d'identité, le contrôle d'accès, le paiement électronique, le verrouillage des appareils personnels, etc. Cependant, la technologie de reconnaissance faciale est également confrontée à certains défis, tels que les erreurs d'identification, la protection de la vie privée et d'autres problèmes.
Une technologie inventée en 1967 est désormais entrée dans nos équipements d'usage quotidien : les téléphones portables. Nous parlons de technologie de reconnaissance faciale (FRT). Alors qu'il était initialement utilisé à des fins de réglementation, de prévention et de sécurité, nous pouvons désormais déverrouiller nos téléphones et même nos applications via FRT.
Il utilise une combinaison d’intelligence artificielle et de technologie biométrique pour reconnaître les visages. La technologie FRT remplace les mots de passe longs et complexes, permettant aux utilisateurs d'accéder facilement aux applications. Cette technologie ajoute une autre couche de sécurité, protégeant les données des utilisateurs.
Avez-vous une application sans technologie de reconnaissance faciale ? Ensuite, vous devez savoir que le marché mondial du FRT devrait atteindre 9 523,15 millions de dollars américains d’ici 2025. Les raisons sont la sécurité du système, la sécurité des utilisateurs et un meilleur engagement des utilisateurs. Il est donc très important de l’intégrer dans les applications mobiles.
Comment fonctionne la technologie de reconnaissance faciale ?
La technologie de reconnaissance faciale utilise des algorithmes pour analyser des images faciales ou des images vidéo et les comparer à une base de données de visages connus pour tenter d'identifier un individu. Voici un aperçu général du fonctionnement du processus :
- Détection : La première étape consiste à détecter les visages dans les images ou les images vidéo. Cela peut être fait en utilisant diverses techniques telles que la cascade Haar, qui est un classificateur qui détecte l'emplacement exact d'un objet dans une image en fonction de ses caractéristiques.
- Alignement : Une fois qu'un visage est détecté, l'algorithme tente de l'aligner dans des positions standard en localisant les caractéristiques clés du visage telles que les yeux, le nez et la bouche.
- Extraction de caractéristiques : L'algorithme extrait ensuite diverses caractéristiques du visage, telles que la distance entre les yeux, la forme du menton et la courbure des lèvres. Ces fonctionnalités sont utilisées pour créer une représentation numérique du visage, appelée empreinte faciale ou modèle facial.
- Comparez : L'empreinte faciale est ensuite comparée à une base de données d'empreintes faciales connues pour tenter d'identifier l'individu. Cela peut être réalisé en utilisant diverses techniques, telles que la distance euclidienne, qui mesure la similitude entre deux empreintes faciales en calculant la distance qui les sépare dans un espace de grande dimension.
- Vérification ou identification : En fonction du cas d'utilisation prévu, l'algorithme peut vérifier qu'un individu est bien celui qu'il prétend être (par exemple, à un point de contrôle de sécurité) ou tenter d'identifier un individu sur la base uniquement de son visage (par exemple, à un point de contrôle de sécurité). dans une enquête criminelle) ).
Il convient de noter que la technologie de reconnaissance faciale présente divers défis et limites, tels que les changements d'éclairage et de posture, ainsi que des problèmes potentiels de biais et de confidentialité.
Comment implémenter FRT dans votre application
La grande question lors de l'application de la reconnaissance faciale dans les applications mobiles est de savoir quelle méthode utiliser ? Il existe plusieurs façons de l'implémenter, à savoir :
1.OpenCV et Python
OpenCV est une bibliothèque de vision par ordinateur open source et Python est un langage de programmation ML populaire. Vous pouvez utiliser OpenCV avec Python pour implémenter la reconnaissance faciale dans votre application. Voici les étapes de base :
- Capturez des images de la caméra à l'aide d'OpenCV.
- Prétraitez les images pour extraire les traits du visage et aligner les visages.
- Entraînez le modèle sur des données prétraitées à l'aide d'algorithmes d'apprentissage automatique tels que des machines à vecteurs de support ou des réseaux de neurones convolutifs.
- Intégrez le modèle dans votre application pour qu'il puisse reconnaître les visages en temps réel.
2. API native
L'un des moyens les plus simples de créer un logiciel de reconnaissance faciale pour Android et iOS consiste à utiliser les API natives de Google et d'Apple. Ces solutions sont abordables, faciles à mettre en œuvre et ne nécessitent aucun coût ni effort supplémentaire. Intégrez l'API dans votre application et garantissez des capacités fiables de détection et de reconnaissance d'images.
3. Microsoft Azure Cognitive Services
Microsoft Azure fournit un ensemble d'API prédéfinies que vous pouvez utiliser pour ajouter la reconnaissance faciale à vos applications. Voici comment utiliser l'API Azure Face :
- Envoyez des images à l'API Face pour détecter et reconnaître les visages.
- Utilisez l'API Face pour identifier les caractéristiques et les attributs du visage tels que l'âge, le sexe et l'émotion.
- Intégrez l'API dans votre application pour reconnaître les visages et afficher des informations pertinentes.
4. API Google Cloud Vision
Google Cloud fournit également une API de reconnaissance faciale que vous pouvez utiliser pour ajouter des fonctionnalités de détection et de reconnaissance faciales à vos applications. Voici comment utiliser l'API Google Cloud Vision :
- Envoyez des images à l'API Vision pour détecter et reconnaître les visages.
- Utilisez l'API pour extraire les traits du visage comme les yeux et le nez.
- Intégrez l'API dans votre application pour reconnaître les visages et effectuer les tâches associées.
Il est important de se rappeler que ce ne sont que quelques exemples, il existe de nombreuses autres techniques et cadres qui peuvent être utilisés pour implémenter la reconnaissance faciale dans les applications. D'autres moyens d'intégrer la technologie de reconnaissance faciale dans vos applications incluent Amazon Rekognition, l'API luxand.cloud et autres. Le choix de la technologie dépendra de vos cas d’utilisation spécifiques, de vos exigences et de votre expertise.
Résumé
Pour réussir la mise en œuvre de la reconnaissance faciale, il est essentiel d'évaluer des facteurs tels que le type d'algorithme de reconnaissance utilisé, les problèmes de confidentialité et de sécurité des données, l'expérience utilisateur et la configuration matérielle requise. Il est également important d’effectuer des tests approfondis et de recueillir les commentaires des utilisateurs pour garantir que la fonctionnalité fonctionne efficacement et répond aux besoins des utilisateurs. Avec une planification et une exécution appropriées, la reconnaissance faciale peut constituer un ajout puissant à toute application, offrant aux utilisateurs une expérience transparente et sécurisée.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière
