


Comment diviser correctement un ensemble de données ? Résumé de trois méthodes courantes
La décomposition de l'ensemble de données en un ensemble d'entraînement peut nous aider à comprendre le modèle, ce qui est très important pour la manière dont le modèle se généralise à de nouvelles données invisibles. Un modèle peut ne pas se généraliser correctement à de nouvelles données invisibles s'il est surajusté. Il n’est donc pas possible de faire de bonnes prédictions.
Avoir une stratégie de validation appropriée est la première étape pour réussir à créer de bonnes prédictions et à utiliser la valeur commerciale des modèles d'IA. Cet article a compilé quelques stratégies courantes de fractionnement des données.
Formation simple et répartition des tests
Divisez l'ensemble de données en parties de formation et de validation, avec 80 % de formation et 20 % de validation. Vous pouvez le faire en utilisant l'échantillonnage aléatoire de Scikit.
Tout d'abord, la graine aléatoire doit être corrigée, sinon la même répartition des données ne peut pas être comparée et les résultats ne peuvent pas être reproduits pendant le débogage. Si l'ensemble de données est petit, rien ne garantit que la répartition de validation puisse être décorrélée de la répartition de formation. Si les données sont déséquilibrées, vous n'obtiendrez pas le même rapport de répartition.
Un simple fractionnement ne peut donc que nous aider à développer et à déboguer. La véritable formation n'est pas assez parfaite, donc les méthodes de fractionnement suivantes peuvent nous aider à mettre fin à ces problèmes. La validation croisée K-fold divise l'ensemble de données en k partitions. Dans l'image ci-dessous, l'ensemble de données est divisé en 5 partitions.
Sélectionnez une partition comme ensemble de données de validation, tandis que les autres partitions sont l'ensemble de données de formation. Cela entraînera le modèle sur chaque ensemble différent de partitions.Au final, K différents modèles seront obtenus, et ces modèles seront utilisés ensemble en utilisant la méthode d'intégration lors du raisonnement et de la prédiction ultérieure.
K est généralement défini sur [3,5,7,10,20]
Si vous souhaitez vérifier les performances du modèle avec un faible biais, utilisez un K [20] plus élevé. Si vous construisez un modèle pour la sélection de variables, utilisez un k faible [3,5] et le modèle aura une variance plus faible.
Avantages :
En faisant la moyenne des prédictions du modèle, vous pouvez améliorer les performances du modèle sur des données invisibles tirées de la même distribution. Il s'agit d'une méthode largement utilisée pour obtenir de bons modèles de production.- Vous pouvez utiliser différentes techniques d'intégration pour créer des prédictions pour chaque donnée de l'ensemble de données, et utiliser ces prédictions pour améliorer le modèle, appelé OOF (out-fold prédiction).
- Question :
- Stratified-kFold
- peut préserver le rapport entre les différentes classes dans chaque pli. Si l'ensemble de données est déséquilibré, disons que Class1 a 10 exemples et Class2 a 100 exemples. Stratified-kFold crée chaque classification de pli avec le même rapport que l'ensemble de données d'origine
L'idée est similaire à la validation croisée K-fold, mais avec le même rapport pour chaque pli que l'ensemble de données d'origine.
Le ratio initial entre les classes peut être conservé à chaque fractionnement. Si votre ensemble de données est volumineux, la validation croisée du pli K peut également préserver les proportions, mais cela est stochastique, alors que Stratified-kFold est déterministe et peut être utilisé avec de petits ensembles de données.Bootstrap et sous-échantillonnage
Bootstrap et sous-échantillonnage sont similaires à la validation croisée K-Fold, mais ils n'ont pas de plis fixes. Il sélectionne aléatoirement certaines données de l'ensemble de données et utilise d'autres données comme validation et les répète n fois
Bootstrap = échantillonnage alterné, que nous avons présenté en détail dans les articles précédents.
Quand l’utiliser ? Bootstrap et Subsamlping ne peuvent être utilisés que si l'erreur standard de l'erreur métrique estimée est importante. Cela peut être dû à des valeurs aberrantes dans l’ensemble de données.
Résumé
Habituellement, dans l'apprentissage automatique, la validation croisée k-fold est utilisée comme point de départ. Si l'ensemble de données est déséquilibré, Stratified-kFold est utilisé. S'il existe de nombreuses valeurs aberrantes, Bootstrap ou d'autres méthodes peuvent être utilisées pour. améliorer le repliement des données.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

En termes simples, un modèle d’apprentissage automatique est une fonction mathématique qui mappe les données d’entrée à une sortie prédite. Plus précisément, un modèle d'apprentissage automatique est une fonction mathématique qui ajuste les paramètres du modèle en apprenant à partir des données d'entraînement afin de minimiser l'erreur entre la sortie prédite et la véritable étiquette. Il existe de nombreux modèles dans l'apprentissage automatique, tels que les modèles de régression logistique, les modèles d'arbre de décision, les modèles de machines à vecteurs de support, etc. Chaque modèle a ses types de données et ses types de problèmes applicables. Dans le même temps, il existe de nombreux points communs entre les différents modèles, ou il existe une voie cachée pour l’évolution du modèle. En prenant comme exemple le perceptron connexionniste, en augmentant le nombre de couches cachées du perceptron, nous pouvons le transformer en un réseau neuronal profond. Si une fonction noyau est ajoutée au perceptron, elle peut être convertie en SVM. celui-ci

Cet article présentera comment identifier efficacement le surajustement et le sous-apprentissage dans les modèles d'apprentissage automatique grâce à des courbes d'apprentissage. Sous-ajustement et surajustement 1. Surajustement Si un modèle est surentraîné sur les données de sorte qu'il en tire du bruit, alors on dit que le modèle est en surajustement. Un modèle surajusté apprend chaque exemple si parfaitement qu'il classera mal un exemple inédit/inédit. Pour un modèle surajusté, nous obtiendrons un score d'ensemble d'entraînement parfait/presque parfait et un score d'ensemble/test de validation épouvantable. Légèrement modifié : "Cause du surajustement : utilisez un modèle complexe pour résoudre un problème simple et extraire le bruit des données. Parce qu'un petit ensemble de données en tant qu'ensemble d'entraînement peut ne pas représenter la représentation correcte de toutes les données."

Dans les années 1950, l’intelligence artificielle (IA) est née. C’est à ce moment-là que les chercheurs ont découvert que les machines pouvaient effectuer des tâches similaires à celles des humains, comme penser. Plus tard, dans les années 1960, le Département américain de la Défense a financé l’intelligence artificielle et créé des laboratoires pour poursuivre son développement. Les chercheurs trouvent des applications à l’intelligence artificielle dans de nombreux domaines, comme l’exploration spatiale et la survie dans des environnements extrêmes. L'exploration spatiale est l'étude de l'univers, qui couvre l'ensemble de l'univers au-delà de la terre. L’espace est classé comme environnement extrême car ses conditions sont différentes de celles de la Terre. Pour survivre dans l’espace, de nombreux facteurs doivent être pris en compte et des précautions doivent être prises. Les scientifiques et les chercheurs pensent qu'explorer l'espace et comprendre l'état actuel de tout peut aider à comprendre le fonctionnement de l'univers et à se préparer à d'éventuelles crises environnementales.

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

MetaFAIR s'est associé à Harvard pour fournir un nouveau cadre de recherche permettant d'optimiser le biais de données généré lors de l'apprentissage automatique à grande échelle. On sait que la formation de grands modèles de langage prend souvent des mois et utilise des centaines, voire des milliers de GPU. En prenant comme exemple le modèle LLaMA270B, sa formation nécessite un total de 1 720 320 heures GPU. La formation de grands modèles présente des défis systémiques uniques en raison de l’ampleur et de la complexité de ces charges de travail. Récemment, de nombreuses institutions ont signalé une instabilité dans le processus de formation lors de la formation des modèles d'IA générative SOTA. Elles apparaissent généralement sous la forme de pics de pertes. Par exemple, le modèle PaLM de Google a connu jusqu'à 20 pics de pertes au cours du processus de formation. Le biais numérique est à l'origine de cette imprécision de la formation,
