


Utiliser l'intelligence artificielle et le big data pour l'analyse psychométrique
Utiliser l'intelligence artificielle et le big data pour l'analyse psychométrique
L'intelligence artificielle (IA) et le big data peuvent aider les recruteurs à mieux comprendre la personnalité et le style de comportement d'une personne.
Peut-être que le plus grand bénéficiaire du Big Data est le domaine de l'intelligence artificielle.
Combinées, ces deux techniques peuvent faire passer l'analyse psychométrique à un niveau supérieur. L’étude de l’impact de l’intelligence artificielle et du big data en psychométrie sera cruciale pour les améliorations futures dans ce domaine.
Le nombre de domaines dans lesquels l’évaluation psychométrique peut avoir un impact est vraiment ahurissant. De l'évaluation des candidats lors du recrutement à la conduite de campagnes nationales, du marketing aux forces de l'ordre, les évaluations psychométriques jouent un rôle important dans la compréhension du pouls de grands groupes de personnes ou des traits de personnalité d'un individu. Si les organisations, qu’il s’agisse de partis politiques ou d’entreprises, exploitent pleinement les capacités big data de la psychométrie, elles peuvent acquérir un avantage presque inattaquable sur leurs champs de bataille respectifs.
Champs d'application de l'intelligence artificielle et du big data en psychométrie
Comme nous le savons tous, la numérisation pénètre dans presque tous les aspects de la vie des gens. Les technologies telles que l’intelligence artificielle et le big data auront donc naturellement un impact dans le domaine de la psychométrie. Les incroyables capacités de traitement et d’analyse des données de l’intelligence artificielle sont bien connues de nos jours. Combiner ces attributs avec la nature globale du Big Data revient à fournir du carburant pour la croissance et le développement de la psychométrie. Vous vous demandez ce que (ou dans quelle mesure) l'intelligence artificielle et le big data peuvent réaliser en psychométrie ? Voici quelques réponses :
1. Recrutement de candidats
Dans le passé, les tests psychologiques ont souvent utilisé la régression logistique à des fins d'analyse. Si ces technologies ont leurs avantages, elles ne sont tout simplement pas comparables aux réalisations de l’intelligence artificielle (complétée par le big data) dans ce domaine. Par exemple, les responsables RH peuvent utiliser l’apprentissage automatique pour identifier les forces et les faiblesses des candidats. Pour ce faire, les responsables RH posent aux candidats une série de questions lors d’entretiens ou d’entretiens à distance. Lorsque les candidats répondent aux questions, leur comportement, leur ton et leurs expressions faciales peuvent tous être surveillés grâce à des caméras IA. Après l’entretien, les recruteurs utilisent l’IA pour évaluer le point de vue et le jugement du candidat, son empathie et son intelligence émotionnelle, ainsi que ses capacités d’engagement, de prise de décision et de supervision. Ces attributs sont jugés et évalués pour comprendre comment le candidat s'engage dans la résolution collaborative de problèmes et joue un rôle décisif dans des situations de haute pression.
En plus des capacités de prise de décision et de résolution de problèmes, la capacité des candidats à accomplir leurs tâches respectives dans des délais stricts peut également être évaluée à l'aide de l'intelligence artificielle et du big data. En plus des exercices d'entretien et d'embauche, d'autres techniques peuvent être utilisées pour évaluer la personnalité d'un candidat. Par exemple, un recruteur peut parcourir les pages de réseaux sociaux d'un candidat pour connaître ses traits de personnalité et ses opinions sur des sujets généraux. Consulter la page des réseaux sociaux de quelqu'un ne devrait pas être un moyen d'évaluer négativement ses opinions. Il s’agit plutôt d’une bonne mesure de la manière dont un candidat exprime ses idées verbalement ou visuellement. Bref, les capacités de communication du candidat peuvent, dans une certaine mesure, être ainsi déterminées. L'intelligence artificielle et le big data peuvent aider les recruteurs à trouver ces données sur le Web, puis à les traiter via la reconnaissance de modèles et d'anomalies pour trouver les traits de personnalité potentiels des candidats.
De plus, l'apprentissage automatique peut également être utilisé pour intégrer des outils de réalité augmentée dans le recrutement de candidats. Les outils de réalité augmentée peuvent créer des simulations réalistes pour évaluer la capacité des candidats à gérer des crises opérationnelles réelles. L'intelligence artificielle utilise le vaste référentiel de Big Data pour évaluer les performances des candidats à ce test. La réalité augmentée ajoute une toute nouvelle dimension au recrutement et à la sélection des candidats, qui ne serait pas possible sans la puissance de l'intelligence artificielle et la portée stupéfiante du Big Data.
2. Activités électorales
Vous avez peut-être entendu comment Cambridge Analytica a aidé l'ancien président américain Donald Trump à remporter les élections de 2016. La campagne de M. Trump a été l’une des campagnes politiques les plus fondées sur les données de tous les temps. Cependant, avant d’explorer, il est important de comprendre l’objectif principal de l’analyse psychométrique.
Les tests psychologiques sont d'abord utilisés pour obtenir des informations sur un individu (ou un groupe de personnes), ainsi que sur leurs goûts, leurs aversions, leurs points de vue et leurs opinions sur divers sujets. La manière dont le collecteur de données traite ces informations dépend du type de résultat final souhaité. Dans ce cas, les mégadonnées et l’intelligence artificielle peuvent contribuer à élargir la portée des évaluations psychologiques à travers l’État ou le pays. Il a été prouvé que la personnalité d'une personne peut être étudiée pour la convaincre d'acheter certains produits ou services. De plus, ces informations peuvent être utilisées pour persuader les individus de voter pour un candidat ou un parti spécifique lors d'une élection.
Jetons un coup d’œil au rôle de Cambridge Analytica dans l’influence de l’élection présidentielle américaine de 2016.
Il y a des indications selon lesquelles l’entreprise technologique a été associée à la campagne de M. Trump depuis un certain temps avant la campagne. Le groupe a utilisé l’intelligence artificielle psychométrique et le big data pour obtenir un avantage électoral. Cette approche est particulièrement révolutionnaire dans la mesure où les candidats précédents ont principalement exploité des arguments démographiques et se sont concentrés sur d’autres questions fondamentales pour les électeurs. Cambridge Analytica intègre des techniques psychométriques avancées pour produire des résultats finaux positifs.
Pour réussir l'élection, l'organisation utilise la science comportementale et la surveillance des électeurs, en plus de certains outils courants comme le modèle OCEAN, le concept de bombardement des individus avec des systèmes et des modèles basés sur l'IA et des analyses avancées de Big Data.
La première étape de ce processus a obligé l'organisation à acheter de grandes quantités de données sur des millions d'individus sur les pages de réseaux sociaux d'organisations bien connues telles que Facebook. En plus de ces enregistrements, des détails tels que les factures d'entretien en attente, les registres fonciers et immobiliers, les données d'achat, l'historique des achats de produits et services, etc. sont également collectés et soigneusement analysés. Si le message est long et large, cela signifie qu’il couvre plusieurs personnes et plusieurs aspects de chaque personne. En d’autres termes, le Big Data. Après avoir rassemblé toutes ces informations, l’entreprise britannique a agrégé et organisé les données. De plus, l’organisation a déployé des outils d’intelligence artificielle pour classer chaque personne différemment en fonction des traits de personnalité des Big Five.
Sur la base de ces informations, les candidats républicains à la présidentielle ciblent dans leurs discours des électeurs plus vulnérables et plus facilement manipulables. Même les discours électoraux ont été soigneusement réglés et adaptés pour trouver un écho auprès des individus de tous les segments de la société. La société a généré plus de 5 millions de dollars de revenus grâce à ses efforts hautement axés sur les données. Pourtant, les véritables héros de la victoire écrasante de M. Trump ont été l’intelligence artificielle et le big data.
3. Marketing des produits et services
Comme mentionné ci-dessus, l'intelligence artificielle et le big data peuvent être utilisés pour comprendre les caractéristiques, les goûts et les préférences des clients potentiels afin d'inonder leurs boîtes de réception de publicités spécifiques et ciblées. À des fins de marketing, les organisations utilisent le Big Data, notamment les pages de réseaux sociaux des clients, l’historique des achats des détaillants numériques et même les messages texte dans certains cas.
Défis liés à l'utilisation du Big Data en psychométrie
Par rapport à l'intelligence artificielle, le Big Data est sans doute plus important dans les domaines d'application ci-dessus. Ainsi, maintenant que nous avons vu certains des domaines d'application de l'intelligence artificielle et du big data en psychométrie, voici les défis auxquels les organisations peuvent être confrontées lorsqu'elles utilisent le big data pour l'analyse de la personnalité :
1. Problèmes causés par le big data et la fourniture de l'intelligence artificielle. Les systèmes intelligents se soucient de la fiabilité des informations analysées. La fiabilité du Big Data sera sérieusement affectée par les algorithmes existants en matière de données, de technologies et d’intelligence artificielle. Le chaos et la complexité du Big Data peuvent poser des problèmes aux systèmes d’IA lors de la réalisation de prédictions et de décisions de haut niveau.
2. Les biais dans l’intelligence artificielle ont toujours été un problème que la technologie doit surmonter. Avec l’ajout du Big Data, l’équité des résultats de l’IA pourrait rester un problème. En outre, on peut également dire que le champ d’influence de l’intelligence artificielle et du big data est limité dans une certaine mesure par le serre fermé d’Internet. Par conséquent, dans de nombreux cas, les mégadonnées ne suffisent pas à inclure des informations sur les individus ou les ménages économiquement défavorisés, car ces personnes n’ont pas accès à Internet et ne peuvent pas acheter d’appareils informatiques.
3. Après la fiabilité et l’équité, vient le défi de la confidentialité des utilisateurs. Comme nous l’avons vu, l’intelligence artificielle et le big data utilisent largement les données des utilisateurs (parfois sans le consentement signé de l’utilisateur) pour produire les résultats finaux. Par conséquent, les mégadonnées et l’intelligence artificielle restent confrontées à des dilemmes éthiques à cet égard.
Les innombrables capacités de l'intelligence artificielle et du big data sont cruciales dans le domaine de la psychométrie. Cependant, certains défis doivent être relevés pour de nouvelles améliorations. Mais il est certain que ces techniques pourront approfondir encore davantage la portée de la psychométrie dans le futur, compte tenu de son développement quasi continu. En attendant, le big data et l’intelligence artificielle continueront à rester dans le domaine de la recherche psychométrique pour atteindre les objectifs ci-dessus et bien plus encore.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Selon les informations de ce site Web du 5 juillet, GlobalFoundries a publié un communiqué de presse le 1er juillet de cette année, annonçant l'acquisition de la technologie de nitrure de gallium (GaN) et du portefeuille de propriété intellectuelle de Tagore Technology, dans l'espoir d'élargir sa part de marché dans l'automobile et Internet. des objets et des domaines d'application des centres de données d'intelligence artificielle pour explorer une efficacité plus élevée et de meilleures performances. Alors que des technologies telles que l’intelligence artificielle générative (GenerativeAI) continuent de se développer dans le monde numérique, le nitrure de gallium (GaN) est devenu une solution clé pour une gestion durable et efficace de l’énergie, notamment dans les centres de données. Ce site Web citait l'annonce officielle selon laquelle, lors de cette acquisition, l'équipe d'ingénierie de Tagore Technology rejoindrait GF pour développer davantage la technologie du nitrure de gallium. g
