Table des matières
Le rôle de la vision par ordinateur
Comment les robots sont utilisés en agriculture
L'intelligence artificielle améliore l'efficacité de l'agriculture
Apprentissage automatique et intelligence artificielle dans l'agriculture
Quel est l'avenir de l'intelligence artificielle en agriculture
Maison Périphériques technologiques IA Agriculture intelligente : la vision par ordinateur et la robotique sont utilisées pour améliorer l'efficacité

Agriculture intelligente : la vision par ordinateur et la robotique sont utilisées pour améliorer l'efficacité

Apr 09, 2023 am 08:31 AM
机器人 计算机视觉

Agriculture intelligente : la vision par ordinateur et la robotique sont utilisées pour améliorer l'efficacité

L'intelligence artificielle en agriculture permet de détecter les ravageurs, les maladies des plantes et la malnutrition dans les exploitations agricoles. Les capteurs d’IA peuvent identifier et cibler les mauvaises herbes avant de décider quel herbicide utiliser dans la zone. L’agriculture de précision, souvent appelée systèmes d’intelligence artificielle, contribue à améliorer la qualité globale et la précision des récoltes.

Le rôle de la vision par ordinateur

Nous avons besoin de beaucoup de terres pour nourrir des milliards de personnes. Aujourd’hui, la culture manuelle n’est plus possible. Parallèlement, les mauvaises récoltes sont souvent causées par des insectes nuisibles et des maladies des plantes. Compte tenu de l’ampleur des opérations agricoles modernes, il est difficile de détecter et d’arrêter cette invasion de ravageurs.

Cela ajoute une nouvelle application à la technologie de vision par ordinateur. Les agriculteurs peuvent utiliser la photographie aérienne pour identifier les premiers indicateurs de maladies ou de ravageurs des plantes au niveau macro et pour identifier les maladies des cultures au niveau micro à l'aide de photos en gros plan des feuilles et des plantes. Les réseaux de neurones convolutifs sont une méthode de vision par ordinateur couramment utilisée dans ces études. Aujourd’hui, de plus en plus d’applications de l’intelligence artificielle dans l’agriculture sont développées.

Il convient de noter que nous utilisons ici le terme « vision par ordinateur » de manière très large. Les images ne constituent généralement pas la source d’information la plus fiable. De nombreux aspects importants de la vie végétale sont mieux étudiés en utilisant d’autres méthodes. Des capteurs spécialisés sont souvent utilisés pour collecter des images hyperspectrales ou des scans laser 3D sont utilisés pour mieux comprendre la santé des plantes. Dans le domaine de l’agronomie, ce type de technologie est de plus en plus utilisé en raison de l’application de l’intelligence artificielle en agriculture.

Ce type de données est généralement à haute résolution et ressemble plus à des photos qu'à l'imagerie médicale. AgMRI est un système de surveillance sur site. Bien que des modèles spécialisés soient nécessaires pour traiter ces données, les réseaux de neurones convolutifs peuvent notamment être utilisés en raison de l’organisation spatiale des données.

Des millions de dollars investis dans la recherche en phénotypage et imagerie végétale. La tâche principale consiste désormais à collecter des ensembles de données importants sur les plantes cultivées, généralement sous la forme d'images ou d'images tridimensionnelles, et à comparer les informations phénotypiques avec les génotypes des plantes. Les résultats et les informations de la recherche peuvent être utilisés pour faire progresser la technologie agricole dans le monde entier. L’agriculture n’est pas le seul domaine utilisant des systèmes d’IA intelligents, l’IA est également un sujet brûlant en matière de recrutement.

Comment les robots sont utilisés en agriculture

De nombreux robots agricoles autonomes sont capables de creuser des trous et de semer des graines dans le sol tout en adhérant aux schémas de base établis et en tenant compte des caractéristiques uniques de la région. Les robots sont également capables de gérer le processus de croissance des plantes et d'interagir avec chaque plante individuellement. Lorsque les récoltes sont mûres, les robots les récoltent, traitant à nouveau chaque plante comme elle doit l'être.

Les drones peuvent pulvériser automatiquement les cultures. Les drones petits et agiles peuvent livrer des matières dangereuses avec une plus grande précision que les avions plus gros. De plus, les photographies aériennes capturées à l'aide de drones pulvérisateurs peuvent être utilisées pour collecter des données pour les algorithmes de vision par ordinateur décrits au début de cet article.

Des robots spécialement conçus pour la récolte sont de plus en plus créés et déployés. Les moissonneuses-batteuses sont utilisées depuis longtemps, tandis que les mauvaises herbes individuelles peuvent être identifiées et éliminées mécaniquement par des robots. Il s’agit d’une autre réalisation remarquable de la robotique et de la vision par ordinateur contemporaines, car avant cela, il était impossible de faire la différence entre les mauvaises herbes et les plantes bénéfiques, ni d’utiliser des mains robotiques pour interagir avec de petites plantes.

L'intelligence artificielle améliore l'efficacité de l'agriculture

Alors que de nombreux robots agricoles sont encore des prototypes ou testés uniquement à petite échelle, l'application du ML, de l'IA et de la robotique dans l'agriculture est déjà évidente. On estime que dans un avenir proche, de plus en plus d’activités agricoles adopteront la mécanisation.

De plus en plus d'applications de l'intelligence artificielle dans l'agriculture sont développées aujourd'hui. Par exemple, un projet pilote d’une entreprise applique la vision par ordinateur à l’élevage, mais ce domaine n’a pas encore suscité un grand intérêt de la part des entreprises de deep learning.

Apprentissage automatique et intelligence artificielle dans l'agriculture

Bien sûr, il existe déjà des initiatives visant à utiliser les données de suivi du bétail pour l'apprentissage automatique. Par exemple, une entreprise pakistanaise a lancé un collier capable de surveiller sans fil l’activité et la température corporelle des vaches. Et des chercheurs français travaillent sur une technologie de reconnaissance faciale pour les vaches.

De plus, il est prévu d’appliquer l’IA à l’élevage porcin, une industrie jusqu’à présent sous-utilisée dont la valeur marchande s’élève à des centaines de milliards de dollars. Dans les fermes modernes, les porcs sont élevés en groupes relativement petits et les animaux les plus comparables sont sélectionnés. La nourriture constitue la principale dépense de la production porcine et, par conséquent, l’objectif principal de la production porcine contemporaine est de maximiser le processus d’engraissement.

Si les éleveurs avaient une compréhension globale de la prise de poids des porcs, ils pourraient résoudre ce problème. Les animaux ne sont généralement pesés que deux fois dans leur vie, à la naissance et à la vente. Si les experts savaient comment chaque porcelet prenait du poids, ils pourraient concevoir un programme d’engraissement unique pour chaque porc, voire une combinaison unique d’additifs alimentaires. Cela augmentera considérablement la production.

Bien que faire monter les animaux sur la balance ne soit pas particulièrement difficile, cela peut leur causer beaucoup de stress et les porcs stressés perdront du poids. Cette nouvelle recherche en intelligence artificielle vise à créer une nouvelle méthode non invasive de pesée des animaux. Utilisez des modèles de vision par ordinateur pour déduire le poids des porcs à partir de données photo et vidéo. Ces estimations seront intégrées aux modèles analytiques d’apprentissage automatique traditionnels existants pour améliorer le processus d’engraissement.

Quel est l'avenir de l'intelligence artificielle en agriculture

L'agriculture et l'élevage sont parfois perçus comme des métiers dépassés. Aujourd’hui, cependant, l’intelligence artificielle en agriculture devient un outil courant dans de nombreuses exploitations agricoles. La principale raison de ce phénomène est le grand nombre d’emplois exercés simultanément dans l’agriculture.

Ils sont si fastidieux qu’il faut recourir au deep learning et à l’intelligence artificielle contemporaine pour les automatiser. Bien que les plantes cultivées et les porcs soient identiques, ils ne proviennent pas de la même chaîne de montage. Chaque buisson de tomates et chaque porc nécessite une approche unique, l'intervention humaine est donc absolument nécessaire.

Nous pouvons tirer parti des développements actuels de l’intelligence artificielle pour résoudre des défis tout en automatisant les technologies qui interagissent avec les plantes et les animaux et prennent en compte leurs caractéristiques uniques. Peser un porc est plus simple que d'apprendre à réussir le test de Turing, et conduire un tracteur dans un vaste champ est plus simple que conduire une voiture dans une circulation dense.

Étant donné que l’agriculture reste l’une des industries les plus grandes et les plus importantes au monde, même de petites améliorations d’efficacité peuvent conduire à des gains significatifs. C’est pourquoi de nombreuses entreprises donnent la priorité à l’intelligence artificielle dans l’agriculture.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

La différence entre les algorithmes de détection de cible à une étape et à deux étapes La différence entre les algorithmes de détection de cible à une étape et à deux étapes Jan 23, 2024 pm 01:48 PM

La détection d'objets est une tâche importante dans le domaine de la vision par ordinateur, utilisée pour identifier des objets dans des images ou des vidéos et localiser leur emplacement. Cette tâche est généralement divisée en deux catégories d'algorithmes, à une étape et à deux étapes, qui diffèrent en termes de précision et de robustesse. Algorithme de détection de cible en une seule étape L'algorithme de détection de cible en une seule étape convertit la détection de cible en un problème de classification. Son avantage est qu'il est rapide et peut terminer la détection en une seule étape. Cependant, en raison d'une simplification excessive, la précision n'est généralement pas aussi bonne que celle de l'algorithme de détection d'objets en deux étapes. Les algorithmes courants de détection d'objets en une seule étape incluent YOLO, SSD et FasterR-CNN. Ces algorithmes prennent généralement l’image entière en entrée et exécutent un classificateur pour identifier l’objet cible. Contrairement aux algorithmes traditionnels de détection de cibles en deux étapes, ils n'ont pas besoin de définir des zones à l'avance, mais de prédire directement

L'Ameca deuxième génération est là ! Il peut communiquer couramment avec le public, ses expressions faciales sont plus réalistes et il peut parler des dizaines de langues. L'Ameca deuxième génération est là ! Il peut communiquer couramment avec le public, ses expressions faciales sont plus réalistes et il peut parler des dizaines de langues. Mar 04, 2024 am 09:10 AM

Le robot humanoïde Ameca est passé à la deuxième génération ! Récemment, lors de la Conférence mondiale sur les communications mobiles MWC2024, le robot le plus avancé au monde, Ameca, est à nouveau apparu. Autour du site, Ameca a attiré un grand nombre de spectateurs. Avec la bénédiction de GPT-4, Ameca peut répondre à divers problèmes en temps réel. "Allons danser." Lorsqu'on lui a demandé si elle avait des émotions, Ameca a répondu avec une série d'expressions faciales très réalistes. Il y a quelques jours à peine, EngineeredArts, la société britannique de robotique derrière Ameca, vient de présenter les derniers résultats de développement de l'équipe. Dans la vidéo, le robot Ameca a des capacités visuelles et peut voir et décrire toute la pièce et des objets spécifiques. Le plus étonnant, c'est qu'elle peut aussi

Comment l'IA peut-elle rendre les robots plus autonomes et adaptables ? Comment l'IA peut-elle rendre les robots plus autonomes et adaptables ? Jun 03, 2024 pm 07:18 PM

Dans le domaine de la technologie de l’automatisation industrielle, il existe deux points chauds récents qu’il est difficile d’ignorer : l’intelligence artificielle (IA) et Nvidia. Ne changez pas le sens du contenu original, affinez le contenu, réécrivez le contenu, ne continuez pas : « Non seulement cela, les deux sont étroitement liés, car Nvidia ne se limite pas à son unité de traitement graphique d'origine (GPU ), il étend son GPU. La technologie s'étend au domaine des jumeaux numériques et est étroitement liée aux technologies émergentes d'IA "Récemment, NVIDIA a conclu une coopération avec de nombreuses entreprises industrielles, notamment des sociétés d'automatisation industrielle de premier plan telles qu'Aveva, Rockwell Automation, Siemens. et Schneider Electric, ainsi que Teradyne Robotics et ses sociétés MiR et Universal Robots. Récemment, Nvidiahascoll

Après 2 mois, le robot humanoïde Walker S peut plier les vêtements Après 2 mois, le robot humanoïde Walker S peut plier les vêtements Apr 03, 2024 am 08:01 AM

Rédacteur en chef du Machine Power Report : Wu Xin La version domestique de l'équipe robot humanoïde + grand modèle a accompli pour la première fois la tâche d'exploitation de matériaux flexibles complexes tels que le pliage de vêtements. Avec le dévoilement de Figure01, qui intègre le grand modèle multimodal d'OpenAI, les progrès connexes des pairs nationaux ont attiré l'attention. Hier encore, UBTECH, le « stock numéro un de robots humanoïdes » en Chine, a publié la première démo du robot humanoïde WalkerS, profondément intégré au grand modèle de Baidu Wenxin, présentant de nouvelles fonctionnalités intéressantes. Maintenant, WalkerS, bénéficiant des capacités de grands modèles de Baidu Wenxin, ressemble à ceci. Comme la figure 01, WalkerS ne se déplace pas, mais se tient derrière un bureau pour accomplir une série de tâches. Il peut suivre les commandes humaines et plier les vêtements

Le premier robot capable d'accomplir de manière autonome des tâches humaines apparaît, avec cinq doigts flexibles et rapides, et de grands modèles prennent en charge l'entraînement dans l'espace virtuel Le premier robot capable d'accomplir de manière autonome des tâches humaines apparaît, avec cinq doigts flexibles et rapides, et de grands modèles prennent en charge l'entraînement dans l'espace virtuel Mar 11, 2024 pm 12:10 PM

Cette semaine, FigureAI, une entreprise de robotique investie par OpenAI, Microsoft, Bezos et Nvidia, a annoncé avoir reçu près de 700 millions de dollars de financement et prévoit de développer un robot humanoïde capable de marcher de manière autonome au cours de la prochaine année. Et l’Optimus Prime de Tesla a reçu à plusieurs reprises de bonnes nouvelles. Personne ne doute que cette année sera celle de l’explosion des robots humanoïdes. SanctuaryAI, une entreprise canadienne de robotique, a récemment lancé un nouveau robot humanoïde, Phoenix. Les responsables affirment qu’il peut accomplir de nombreuses tâches de manière autonome, à la même vitesse que les humains. Pheonix, le premier robot au monde capable d'accomplir des tâches de manière autonome à la vitesse d'un humain, peut saisir, déplacer et placer avec élégance chaque objet sur ses côtés gauche et droit. Il peut identifier des objets de manière autonome

Application de la technologie de l'IA à la reconstruction d'images en super-résolution Application de la technologie de l'IA à la reconstruction d'images en super-résolution Jan 23, 2024 am 08:06 AM

La reconstruction d'images en super-résolution est le processus de génération d'images haute résolution à partir d'images basse résolution à l'aide de techniques d'apprentissage en profondeur, telles que les réseaux neuronaux convolutifs (CNN) et les réseaux contradictoires génératifs (GAN). Le but de cette méthode est d'améliorer la qualité et les détails des images en convertissant des images basse résolution en images haute résolution. Cette technologie trouve de nombreuses applications dans de nombreux domaines, comme l’imagerie médicale, les caméras de surveillance, les images satellites, etc. Grâce à la reconstruction d’images en super-résolution, nous pouvons obtenir des images plus claires et plus détaillées, ce qui permet d’analyser et d’identifier plus précisément les cibles et les caractéristiques des images. Méthodes de reconstruction Les méthodes de reconstruction d'images en super-résolution peuvent généralement être divisées en deux catégories : les méthodes basées sur l'interpolation et les méthodes basées sur l'apprentissage profond. 1) Méthode basée sur l'interpolation Reconstruction d'images en super-résolution basée sur l'interpolation

Comment utiliser la technologie IA pour restaurer d'anciennes photos (avec exemples et analyse de code) Comment utiliser la technologie IA pour restaurer d'anciennes photos (avec exemples et analyse de code) Jan 24, 2024 pm 09:57 PM

La restauration de photos anciennes est une méthode d'utilisation de la technologie de l'intelligence artificielle pour réparer, améliorer et améliorer de vieilles photos. Grâce à des algorithmes de vision par ordinateur et d’apprentissage automatique, la technologie peut identifier et réparer automatiquement les dommages et les imperfections des anciennes photos, les rendant ainsi plus claires, plus naturelles et plus réalistes. Les principes techniques de la restauration de photos anciennes incluent principalement les aspects suivants : 1. Débruitage et amélioration de l'image Lors de la restauration de photos anciennes, elles doivent d'abord être débruitées et améliorées. Des algorithmes et des filtres de traitement d'image, tels que le filtrage moyen, le filtrage gaussien, le filtrage bilatéral, etc., peuvent être utilisés pour résoudre les problèmes de bruit et de taches de couleur, améliorant ainsi la qualité des photos. 2. Restauration et réparation d'images Les anciennes photos peuvent présenter certains défauts et dommages, tels que des rayures, des fissures, une décoloration, etc. Ces problèmes peuvent être résolus par des algorithmes de restauration et de réparation d’images

Le robot de balayage et de nettoyage Cloud Whale Xiaoyao 001 a un « cerveau » ! Expérience | Le robot de balayage et de nettoyage Cloud Whale Xiaoyao 001 a un « cerveau » ! Expérience | Apr 26, 2024 pm 04:22 PM

Les robots de balayage et de nettoyage sont l’un des appareils électroménagers intelligents les plus populaires auprès des consommateurs ces dernières années. La commodité d'utilisation qu'il apporte, voire l'absence d'opération, permet aux paresseux de libérer leurs mains, permettant aux consommateurs de « se libérer » des tâches ménagères quotidiennes et de consacrer plus de temps à ce qu'ils aiment. Une qualité de vie améliorée sous une forme déguisée. Surfant sur cet engouement, presque toutes les marques d'électroménager du marché fabriquent leurs propres robots de balayage et de nettoyage, rendant l'ensemble du marché des robots de balayage et de nettoyage très vivant. Cependant, l'expansion rapide du marché entraînera inévitablement un danger caché : de nombreux fabricants utiliseront la tactique de la mer de machines pour occuper rapidement plus de parts de marché, ce qui entraînera de nombreux nouveaux produits sans aucun point de mise à niveau. ce sont des modèles de "matriochka". Ce n'est pas une exagération. Cependant, tous les robots de balayage et de nettoyage ne sont pas

See all articles