


Comment utiliser l'IA pour contrôler la fabrication numérique ?
Alors que les scientifiques et les ingénieurs créent constamment de nouveaux matériaux dotés de qualités particulières pouvant être utilisés pour l'impression 3D, cela peut s'avérer une tâche difficile et coûteuse.
Pour trouver les meilleurs paramètres qui produisent systématiquement la meilleure qualité d'impression pour les nouveaux matériaux, les opérateurs professionnels doivent souvent mener des expériences manuelles par essais et erreurs, créant parfois des milliers d'impressions. La vitesse d'impression et la quantité de matériau déposée par l'imprimante sont quelques-unes des variables.
Désormais, les chercheurs du MIT utilisent l'IA pour simplifier ce processus. Ils ont développé un système ML qui utilise la vision par ordinateur pour surveiller le processus de production et corriger les erreurs de traitement en temps réel.
Après avoir utilisé des simulations pour entraîner le réseau neuronal à modifier les paramètres d'impression afin de réduire les erreurs, ils ont placé le contrôleur sur une véritable imprimante 3D.
Ce travail évite le processus d'impression de dizaines ou de centaines de millions d'objets réels pour enseigner les réseaux de neurones. De plus, cela pourrait permettre aux ingénieurs d’incorporer plus facilement de nouveaux matériaux dans leurs conceptions, leur permettant ainsi de créer des produits dotés de propriétés chimiques ou électriques uniques. Cela peut également permettre aux techniciens d'effectuer plus facilement des ajustements rapides du processus d'impression en cas de changements inattendus dans les paramètres ou dans le matériau à imprimer.
Choisir les meilleurs paramètres pour une méthode de fabrication numérique peut être l'une des étapes les plus coûteuses du processus en raison du nombre d'essais et d'erreurs impliqués. De plus, une fois que le technicien découvre une combinaison qui fonctionne bien, ces paramètres ne sont optimaux que dans cette situation spécifique. Parce qu'il y a un manque d'informations sur la façon dont la substance se comporte dans divers environnements, sur divers équipements, ou sur la question de savoir si les nouveaux lots ont des caractéristiques différentes.
De plus, l'utilisation des systèmes ML présente des difficultés. Les chercheurs ont d’abord dû mesurer en temps réel ce qui se passait au niveau de l’imprimante.
Pour ce faire, ils ont développé un dispositif de vision industrielle avec deux caméras pointées vers la buse de l'imprimante 3D. La technologie éclaire le matériau au fur et à mesure de son dépôt et détermine son épaisseur en fonction de la quantité de lumière qui le traverse.
La formation d'un contrôleur basé sur un réseau neuronal pour comprendre ce processus de fabrication nécessite des millions d'impressions, ce qui est une opération gourmande en données.
Leur contrôleur est formé à l'aide d'une méthode appelée apprentissage par renforcement, qui éduque le modèle en le rémunérant lorsqu'il commet une erreur. Le modèle nécessite la sélection de paramètres d'impression pouvant produire des objets spécifiques dans l'environnement virtuel. Lorsque le modèle reçoit un résultat de prédiction, celui-ci peut être obtenu en sélectionnant des paramètres qui minimisent la variance entre le résultat imprimé et le résultat attendu.
Dans ce cas, « erreur » signifie que le modèle a soit trop de matière allouée, remplissant des espaces qui devraient rester vides, soit pas assez de matière, laissant des espaces qui doivent être remplis.
Cependant, le monde réel est plus rude que le modèle. Dans la pratique, les conditions changent souvent en raison de petites fluctuations ou du bruit du processus d'impression. Les chercheurs ont utilisé cette méthode pour simuler le bruit, obtenant ainsi des résultats plus précis.
Lorsque le contrôleur a été testé, il a imprimé les objets avec plus de précision que toute autre stratégie de contrôle examinée. Cette méthode est particulièrement efficace lors de l’impression de matériaux de remplissage, ce qui implique l’impression de l’intérieur d’un objet. Le contrôleur des chercheurs a modifié le chemin d'impression afin que l'objet reste horizontal, tandis que d'autres contrôleurs ont placé de grandes quantités de matériau de manière à ce que l'objet imprimé dépasse vers le haut.
Même après le dépôt du matériau, la stratégie de contrôle peut comprendre comment il se disperse et s'adapte aux paramètres.
Les chercheurs avaient l'intention de créer des contrôles pour d'autres processus de fabrication, et ils ont maintenant démontré l'efficacité de cette approche dans l'impression 3D. Ils souhaitent également étudier comment modifier la stratégie pour s'adapter aux situations dans lesquelles plusieurs couches de matériaux ou divers matériaux sont produits simultanément. De plus, leur méthode suppose une viscosité constante pour chaque matériau, mais les futures versions pourraient utiliser l’IA pour détecter et calculer la viscosité en temps réel.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

La commande de fermeture CENTOS est arrêtée et la syntaxe est la fermeture de [options] le temps [informations]. Les options incluent: -H Arrêtez immédiatement le système; -P éteignez l'alimentation après l'arrêt; -r redémarrer; -t temps d'attente. Les temps peuvent être spécifiés comme immédiats (maintenant), minutes (minutes) ou une heure spécifique (HH: mm). Des informations supplémentaires peuvent être affichées dans les messages système.

Guide complet pour vérifier la configuration HDFS dans les systèmes CentOS Cet article vous guidera comment vérifier efficacement la configuration et l'état de l'exécution des HDF sur les systèmes CentOS. Les étapes suivantes vous aideront à bien comprendre la configuration et le fonctionnement des HDF. Vérifiez la variable d'environnement Hadoop: Tout d'abord, assurez-vous que la variable d'environnement Hadoop est correctement définie. Dans le terminal, exécutez la commande suivante pour vérifier que Hadoop est installé et configuré correctement: HadoopVersion Check HDFS Fichier de configuration: Le fichier de configuration de base de HDFS est situé dans le répertoire / etc / hadoop / conf / le répertoire, où Core-site.xml et hdfs-site.xml sont cruciaux. utiliser

La politique de sauvegarde et de récupération de GitLab dans le système CentOS afin d'assurer la sécurité et la récupérabilité des données, Gitlab on CentOS fournit une variété de méthodes de sauvegarde. Cet article introduira plusieurs méthodes de sauvegarde courantes, paramètres de configuration et processus de récupération en détail pour vous aider à établir une stratégie complète de sauvegarde et de récupération de GitLab. 1. MANUEL BACKUP Utilisez le Gitlab-RakegitLab: Backup: Créer la commande pour exécuter la sauvegarde manuelle. Cette commande sauvegarde des informations clés telles que le référentiel Gitlab, la base de données, les utilisateurs, les groupes d'utilisateurs, les clés et les autorisations. Le fichier de sauvegarde par défaut est stocké dans le répertoire / var / opt / gitlab / backups. Vous pouvez modifier / etc / gitlab

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

L'installation de MySQL sur CENTOS implique les étapes suivantes: Ajout de la source MySQL YUM appropriée. Exécutez la commande YUM Install MySQL-Server pour installer le serveur MySQL. Utilisez la commande mysql_secure_installation pour créer des paramètres de sécurité, tels que la définition du mot de passe de l'utilisateur racine. Personnalisez le fichier de configuration MySQL selon les besoins. Écoutez les paramètres MySQL et optimisez les bases de données pour les performances.

Un guide complet pour consulter les journaux GitLab sous Centos System Cet article vous guidera comment afficher divers journaux GitLab dans le système CentOS, y compris les journaux principaux, les journaux d'exception et d'autres journaux connexes. Veuillez noter que le chemin du fichier journal peut varier en fonction de la version Gitlab et de la méthode d'installation. Si le chemin suivant n'existe pas, veuillez vérifier le répertoire d'installation et les fichiers de configuration de GitLab. 1. Afficher le journal GitLab principal Utilisez la commande suivante pour afficher le fichier journal principal de l'application GitLabRails: Commande: sudocat / var / log / gitlab / gitlab-rails / production.log Cette commande affichera le produit

La formation distribuée par Pytorch sur le système CentOS nécessite les étapes suivantes: Installation de Pytorch: La prémisse est que Python et PIP sont installés dans le système CentOS. Selon votre version CUDA, obtenez la commande d'installation appropriée sur le site officiel de Pytorch. Pour la formation du processeur uniquement, vous pouvez utiliser la commande suivante: pipinstalltorchtorchVisionTorChaudio Si vous avez besoin d'une prise en charge du GPU, assurez-vous que la version correspondante de CUDA et CUDNN est installée et utilise la version Pytorch correspondante pour l'installation. Configuration de l'environnement distribué: la formation distribuée nécessite généralement plusieurs machines ou des GPU multiples uniques. Lieu
