


Comment les entreprises déploient l'IA pour maximiser la valeur
L'intelligence artificielle est cruciale, elle est non seulement un catalyseur clé mais aussi un booster dans le parcours de transformation numérique des entreprises. C’est le moteur du développement des entreprises aujourd’hui et demain.
C’est parce que l’IA a le potentiel de remodeler le Fortune 500, tout comme Internet l’a fait. Des acteurs établis depuis des décennies pourraient perdre du terrain, tandis que des challengers obscurs et perturbateurs pourraient devenir les prochains leaders du secteur.
La transformation numérique pilotée par l'intelligence artificielle a un impact énorme sur trois domaines d'activité importants. Le plus évident est la pile technologique et la garantie qu’elle est prête pour l’IA. Vient ensuite la manière dont l’IA va modifier les processus et opérations commerciaux de l’entreprise, l’IA ayant le potentiel de transformer les processus établis grâce à l’automatisation. Troisièmement, et peut-être le plus important, il y a la transformation que l’intelligence artificielle apportera aux entreprises.
L'adoption et le déploiement de l'IA s'avéreront être un différenciateur clé sur le marché dans les années à venir : pour surmonter les vents contraires économiques à venir et garder une longueur d'avance sur leurs concurrents, les entreprises doivent faire de l'IA un principe clé de leurs stratégies de transformation numérique.
Avec le développement rapide de la technologie, l'efficacité du déploiement de l'intelligence artificielle dépend de la maximisation des avantages tout en minimisant le coût de mise en œuvre du modèle. Pour les entreprises qui explorent comment utiliser l’intelligence artificielle, il existe trois façons de maximiser la valeur de leur déploiement.
1. Passage à l'informatique centrée sur les données
De nombreuses entreprises subissent des changements technologiques, passant de l'informatique centrée sur les modèles à l'informatique centrée sur les données. En termes simples, nous n'avons pas besoin de créer un modèle d'IA et d'introduire des données dans le modèle, mais plutôt d'appliquer le modèle directement aux données. En raison de stratégies de transformation numérique plus larges, de nombreuses entreprises sont déjà engagées dans ce processus, se tournant vers les plates-formes informatiques d'IA comme point de livraison unique pour la fourniture de services à l'échelle de l'entreprise.
Non seulement cela apporte des gains d'efficacité, mais cela nous donne également des déploiements d'IA plus vastes et plus transformateurs qui fonctionnent dans tous les départements et combinent les processus.
2. Focus sur les modèles précieux
L'intégration des modèles d'apprentissage automatique a subi des changements importants. Il y a à peine trois ans, des centaines de nouveaux articles de recherche étaient publiés chaque semaine sur les nouveaux modèles d'apprentissage automatique, suscitant des inquiétudes quant à la croissance incontrôlable des modèles. Aujourd’hui, cette tendance s’inverse. Elle est moins spécifique et généralisable, ce qui se traduit par un nombre de modèles plus limité. Un seul modèle de langage commun peut fournir des fonctionnalités à partir de plusieurs tâches en aval, et non d'une seule.
À mesure que les modèles deviennent plus petits, ils deviennent en fait plus standardisés. Cela a un effet secondaire intéressant, dans lequel la valeur de la propriété intellectuelle utilisée pour créer de nouveaux modèles d’IA diminue. Les entreprises réalisent désormais que leur véritable valeur et leur propriété intellectuelle résident dans les données qu’elles détiennent, ce qui souligne encore davantage l’évolution vers une informatique centrée sur les données.
3. Combiner des modèles et déployer une IA multimodale
Bien entendu, l'intelligence artificielle n'a jamais été une technologie spécifique, bien définie. Il s'agit d'un terme général désignant de nombreuses technologies connexes. Ce à quoi nous assistons aujourd’hui, c’est la montée en puissance de la combinaison de modèles et de leur déploiement sur différents types de données. La fusion de différents modèles d'IA et types de données dans un seul pipeline entraînera une plus grande efficacité opérationnelle et de nouveaux services offerts.
Un exemple est la combinaison du traitement du langage naturel et de la vision par ordinateur, qui aboutit à un algorithme de génération d'images qui crée des images basées sur la saisie de texte.
Un autre exemple plus pratique est que le modèle de langage extrait les exceptions du journal système et les transmet ensuite à l'algorithme de recommandation. Les moteurs de recommandation de commerce électronique « Vous avez acheté ceci, peut-être que vous aimerez ceci » sont courants, mais dans le contexte des modèles NLP, ils peuvent être exploités pour fournir aux analystes du support des recommandations sur la prochaine meilleure action à corriger dans les journaux de texte. Voir l'anomalie .
L'intelligence artificielle est adoptée dans tous les départements et entreprises, et les dirigeants et les équipes de direction ne veulent pas être laissés pour compte par des concurrents qui mettent en œuvre avec succès cette technologie. À mesure que l’IA est de plus en plus utilisée, les entreprises qui peuvent la déployer avec la plus grande efficacité obtiendront le prochain avantage concurrentiel.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Une explication détaillée des attributs d'acide de base de données Les attributs acides sont un ensemble de règles pour garantir la fiabilité et la cohérence des transactions de base de données. Ils définissent comment les systèmes de bases de données gérent les transactions et garantissent l'intégrité et la précision des données même en cas de plantages système, d'interruptions d'alimentation ou de plusieurs utilisateurs d'accès simultanément. Présentation de l'attribut acide Atomicité: une transaction est considérée comme une unité indivisible. Toute pièce échoue, la transaction entière est reculée et la base de données ne conserve aucune modification. Par exemple, si un transfert bancaire est déduit d'un compte mais pas augmenté à un autre, toute l'opération est révoquée. BeginTransaction; UpdateAccountSsetBalance = Balance-100Wh

Clause SQLLIMIT: Contrôlez le nombre de lignes dans les résultats de la requête. La clause limite dans SQL est utilisée pour limiter le nombre de lignes renvoyées par la requête. Ceci est très utile lors du traitement de grands ensembles de données, des affichages paginés et des données de test, et peut améliorer efficacement l'efficacité de la requête. Syntaxe de base de la syntaxe: selectColumn1, Column2, ... FromTable_NamelimitNumber_Of_Rows; Number_OF_ROWS: Spécifiez le nombre de lignes renvoyées. Syntaxe avec décalage: selectColumn1, Column2, ... FromTable_Namelimitoffset, numéro_of_rows; décalage: sauter

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

Il est impossible de visualiser le mot de passe MongoDB directement via NAVICAT car il est stocké sous forme de valeurs de hachage. Comment récupérer les mots de passe perdus: 1. Réinitialiser les mots de passe; 2. Vérifiez les fichiers de configuration (peut contenir des valeurs de hachage); 3. Vérifiez les codes (May Code Hardcode).

Explication détaillée de la clause SqlorderBy: le tri efficace de la clause de données d'ordre de données est une déclaration clé de SQL utilisée pour trier les ensembles de résultats de requête. Il peut être organisé en ordre ascendant (ASC) ou ordre décroissant (DESC) dans des colonnes uniques ou plusieurs colonnes, améliorant considérablement la lisibilité des données et l'efficacité de l'analyse. OrderBy Syntax selectColumn1, Column2, ... FromTable_NameOrderByColumn_Name [ASC | DESC]; Column_name: Triez par colonne. ASC: Ascendance Order Sort (par défaut). DESC: Trier en ordre décroissant. ORDERBY Fonctionnalités principales: Tri multi-colonnes: prend en charge le tri de plusieurs colonnes et l'ordre des colonnes détermine la priorité du tri. depuis

Erreurs et solutions courantes Lors de la connexion aux bases de données: nom d'utilisateur ou mot de passe (erreur 1045) Blocs de pare-feu Connexion (erreur 2003) Délai de connexion (erreur 10060) Impossible d'utiliser la connexion à socket (erreur 1042) Erreur de connexion SSL (erreur 10055) Trop de connexions Résultat de l'hôte étant bloqué (erreur 1129)

L'instruction INSERT SQL est utilisée pour ajouter de nouvelles lignes à une table de base de données, et sa syntaxe est: Insérer dans Table_Name (Column1, Column2, ..., Columnn) VALEUR (VALEUR1, Value2, ..., Valuen);. Cette instruction prend en charge l'insertion de plusieurs valeurs et permet d'insérer des valeurs nulles dans des colonnes, mais il est nécessaire de s'assurer que les valeurs insérées sont compatibles avec le type de données de la colonne pour éviter de violer les contraintes d'unicité.

Ajoutez de nouvelles colonnes à une table existante dans SQL en utilisant l'instruction ALTER TABLE. Les étapes spécifiques comprennent: la détermination des informations du nom de la table et de la colonne, rédaction des instructions de la table ALTER et exécution des instructions. Par exemple, ajoutez une colonne de messagerie à la table des clients (VARCHAR (50)): Alter Table Clients Ajouter un e-mail VARCHAR (50);
