Table des matières
Modèle de classement
Du feedback binaire au feedback à corrélation multiple
Niveaux de pertinence pour des commentaires de pertinence multiples
Échantillons de poids pour un retour de corrélation multiple
Conclusion
Maison Périphériques technologiques IA eBay utilise l'apprentissage automatique pour améliorer les annonces de vente

eBay utilise l'apprentissage automatique pour améliorer les annonces de vente

Apr 09, 2023 pm 10:31 PM
机器学习 数据 ebay

​Traducteur | Bugatti

Reviewer | Sun Shujuan

Le marché en ligne eBay a ajouté des signaux d'achat supplémentaires à son modèle d'apprentissage automatique, tels que « Ajouter à la liste de surveillance », « Enchérir » et « Ajouter au panier », améliorer la pertinence des recommandations listes d'annonces basées sur le produit initial recherché. Chen Xue a donné une introduction très détaillée dans ce récent ​article​​.

eBay utilise l'apprentissage automatique pour améliorer les annonces de vente

Le Standard pour les annonces sponsorisées (PLS) d'eBay est une option payante pour les vendeurs. Grâce à l'option PLSIM, le moteur de recommandation d'eBay recommandera des produits sponsorisés similaires à celui sur lequel l'acheteur potentiel vient de cliquer. PLSIM paie sur un modèle CPA (les vendeurs ne paient eBay que lorsqu'une vente est réalisée), c'est donc une excellente incitation à créer le modèle le plus efficace pour promouvoir les meilleures annonces. Cela fonctionne souvent pour les vendeurs, les acheteurs et eBay.

Le parcours PLSIM est le suivant :

1. L'utilisateur recherche des produits.

2. L'utilisateur clique sur les résultats de la recherche -> Connectez-vous à la page Afficher les éléments (VI) pour afficher les éléments répertoriés (eBay les appelle éléments de départ).

3. Les utilisateurs font défiler la page VI et peuvent voir les produits recommandés dans PLSIM.

4. Les utilisateurs cliquent sur les articles de PLSIM pour effectuer des actions (afficher, ajouter au panier, acheter maintenant, etc.) ou afficher un autre nouvel ensemble d'articles recommandés.

eBay utilise l'apprentissage automatique pour améliorer les annonces de vente

Du point de vue de l'apprentissage automatique, le parcours PLSIM est le suivant :

  1. Récupérez le sous-ensemble de critères de la liste de promotion des candidats qui sont les plus étroitement liés à l'élément de départ ("trouver l'ensemble complet").
  2. Utilisez un trieur d'apprentissage automatique qualifié pour trier la liste de produits dans l'ensemble de recherche en fonction de la probabilité d'achat.
  3. Réorganisez la liste de produits en fonction des tarifs publicitaires pour équilibrer la vitesse de vente du vendeur obtenue grâce aux promotions avec la pertinence des recommandations.

Modèle de classement

Le modèle de classement est basé sur les données historiques suivantes :

  • Données sur les articles recommandés
  • Articles recommandés similaires aux articles de départ
  • Contexte (pays et catégorie de produit)
  • Fonctionnalités de personnalisation de l'utilisateur

Utilisation d'eBay Arbre d'amélioration du gradient, pour un produit de départ spécifique, l'arbre d'amélioration du gradient trie les produits en fonction de leur probabilité d'achat relative.

Du feedback binaire au feedback à corrélation multiple

Dans le passé, la probabilité d'achat reposait sur des données d'achat binaires. Il est « pertinent » s’il est acheté avec l’élément de départ, sinon il est « non pertinent ». Il s'agit d'une approche qui a échoué, mais plusieurs aspects principaux peuvent être optimisés :

  • Faux négatifs : étant donné que les utilisateurs n'achètent généralement qu'un seul article de la liste de recommandations, de bonnes recommandations ne seront pas faites lorsque l'achat n'est pas effectué. Peut être consulté comme une mauvaise recommandation, conduisant à des faux positifs.
  • Peu d'achats : il devient assez difficile de former un modèle avec un nombre et une diversité d'achats suffisants pour prédire la classe à terme par rapport aux autres événements utilisateur.
  • Données manquantes : des clics pour ajouter au panier, de nombreuses actions des utilisateurs révèlent une richesse d'informations sur les utilisateurs, révélant les résultats possibles.

Pour résumer, les ingénieurs d'eBay prennent en compte les actions suivantes de l'utilisateur en plus des clics initiaux et comment les ajouter au modèle de classement :

  • Acheter maintenant (s'applique uniquement aux annonces d'achat immédiat, c'est-à-dire aux annonces BIN)
  • AJOUTER À PANIER (LISTES DE BIN UNIQUEMENT)
  • ENCHÈRE (LISTES DE MEILLEURES ENCHÈRES UNIQUEMENT)
  • FAIRE UNE ENCHÈRE (LISTES D'ENCHÈRES UNIQUEMENT)
  • AJOUTER À LA LISTE DE SURVEILLANCE (LISTES DE BIN, MEILLEURE ENCHÈRE OU D'ENCHÈRE UNIQUEMENT))

eBay utilise l'apprentissage automatique pour améliorer les annonces de vente

Exemple d'interface utilisateur

Niveaux de pertinence pour des commentaires de pertinence multiples

eBay sait désormais que les achats sont extrêmement pertinents, des actions supplémentaires doivent donc être ajoutées, mais la nouvelle question est : où se situent ces actions dans l'échelle de pertinence ?

L'image ci-dessous illustre comment eBay trie les actions possibles restantes : "Enchérir", "Acheter maintenant", "Ajouter à la liste de suivi" et "Ajouter au panier".

eBay utilise l'apprentissage automatique pour améliorer les annonces de vente

Dans les données d'entraînement historiques pour les éléments de départ, chaque élément potentiel est étiqueté avec un niveau de pertinence selon l'échelle suivante.

eBay utilise l'apprentissage automatique pour améliorer les annonces de vente

marque le résultat que lors de la formation, le trieur pénalise plus sévèrement les achats mal commandés que les achats mal commandés Acheter maintenant, et ainsi de suite vers le bas.

Échantillons de poids pour un retour de corrélation multiple

Les arbres à gradient amélioré prennent en charge plusieurs étiquettes pour capturer une plage de corrélations, mais il n'existe aucun moyen direct d'obtenir l'ampleur des corrélations.

eBay a dû exécuter les tests de manière itérative jusqu'à ce qu'ils parviennent à des chiffres permettant au modèle de fonctionner. Les chercheurs ont ajouté des poids supplémentaires (appelés « poids d’échantillonnage ») qui ont été introduits dans la fonction de perte par paire. Ils ont optimisé le réglage des hyperparamètres et l'ont exécuté pendant 25 itérations avant d'arriver aux meilleurs poids d'échantillon - "Ajouter à la liste de surveillance" (6), "Ajouter au panier" (15), "Enchère" (38), "Acheter maintenant" (8 ) et « Acheter » (15). Sans poids d’échantillonnage, le nouveau modèle fonctionnera moins bien. Avec les poids d'échantillonnage, le nouveau modèle surpasse le modèle binaire.

Ils ont essayé d'ajouter uniquement des clics comme commentaires pertinents supplémentaires et ont appliqué un poids d'échantillon d'hyperparamètre « Achat » ajusté de 150. Les résultats hors ligne sont également affichés ci-dessous, où « BOWC » signifie les actions Acheter maintenant, Faire une offre, Ajouter à la liste de surveillance et Ajouter au panier. Le classement des achats reflète le classement moyen des articles achetés. Plus c’est petit, mieux c’est.

eBay utilise l'apprentissage automatique pour améliorer les annonces de vente

Conclusion

Le modèle entraîné compte un total de plus de 2000 instances. Les tests A/B se déroulent en deux étapes. La première phase, qui comprenait uniquement des balises sélectionnées supplémentaires et a montré une augmentation de 2,97 % du nombre d'achats et une augmentation de 2,66 % des revenus publicitaires sur l'application mobile eBay, a été jugée suffisamment réussie pour faire passer le modèle en production mondiale.

La deuxième phase a ajouté plus d'actions au modèle, telles que « Ajouter à la liste de suivi », « Ajouter au panier », « Enchérir » et « Acheter maintenant », et les tests A/B ont montré un meilleur engagement client (comme plus de clics et de BWC). ).

eBay utilise l'apprentissage automatique pour améliorer les annonces de vente

Titre original : EBay utilise l'apprentissage automatique pour affiner les annonces sponsorisées​, auteur : Jessica Wachtel​

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Cet article vous amènera à comprendre SHAP : explication du modèle pour l'apprentissage automatique Cet article vous amènera à comprendre SHAP : explication du modèle pour l'apprentissage automatique Jun 01, 2024 am 10:58 AM

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

Vitesse Internet lente des données cellulaires sur iPhone : correctifs Vitesse Internet lente des données cellulaires sur iPhone : correctifs May 03, 2024 pm 09:01 PM

Vous êtes confronté à un décalage et à une connexion de données mobile lente sur iPhone ? En règle générale, la puissance de l'Internet cellulaire sur votre téléphone dépend de plusieurs facteurs tels que la région, le type de réseau cellulaire, le type d'itinérance, etc. Vous pouvez prendre certaines mesures pour obtenir une connexion Internet cellulaire plus rapide et plus fiable. Correctif 1 – Forcer le redémarrage de l'iPhone Parfois, le redémarrage forcé de votre appareil réinitialise simplement beaucoup de choses, y compris la connexion cellulaire. Étape 1 – Appuyez simplement une fois sur la touche d’augmentation du volume et relâchez-la. Ensuite, appuyez sur la touche de réduction du volume et relâchez-la à nouveau. Étape 2 – La partie suivante du processus consiste à maintenir le bouton sur le côté droit. Laissez l'iPhone finir de redémarrer. Activez les données cellulaires et vérifiez la vitesse du réseau. Vérifiez à nouveau Correctif 2 – Changer le mode de données Bien que la 5G offre de meilleures vitesses de réseau, elle fonctionne mieux lorsque le signal est plus faible

Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Jun 03, 2024 pm 01:25 PM

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

La vitalité de la super intelligence s'éveille ! Mais avec l'arrivée de l'IA qui se met à jour automatiquement, les mères n'ont plus à se soucier des goulots d'étranglement des données. La vitalité de la super intelligence s'éveille ! Mais avec l'arrivée de l'IA qui se met à jour automatiquement, les mères n'ont plus à se soucier des goulots d'étranglement des données. Apr 29, 2024 pm 06:55 PM

Je pleure à mort. Le monde construit à la folie de grands modèles. Les données sur Internet ne suffisent pas du tout. Le modèle de formation ressemble à « The Hunger Games », et les chercheurs en IA du monde entier se demandent comment nourrir ces personnes avides de données. Ce problème est particulièrement important dans les tâches multimodales. À une époque où rien ne pouvait être fait, une équipe de start-up du département de l'Université Renmin de Chine a utilisé son propre nouveau modèle pour devenir la première en Chine à faire de « l'auto-alimentation des données générées par le modèle » une réalité. De plus, il s’agit d’une approche à deux volets, du côté compréhension et du côté génération, les deux côtés peuvent générer de nouvelles données multimodales de haute qualité et fournir un retour de données au modèle lui-même. Qu'est-ce qu'un modèle ? Awaker 1.0, un grand modèle multimodal qui vient d'apparaître sur le Forum Zhongguancun. Qui est l'équipe ? Moteur Sophon. Fondé par Gao Yizhao, doctorant à la Hillhouse School of Artificial Intelligence de l’Université Renmin.

L'US Air Force présente son premier avion de combat IA de grande envergure ! Le ministre a personnellement effectué l'essai routier sans intervenir pendant tout le processus, et 100 000 lignes de code ont été testées 21 fois. L'US Air Force présente son premier avion de combat IA de grande envergure ! Le ministre a personnellement effectué l'essai routier sans intervenir pendant tout le processus, et 100 000 lignes de code ont été testées 21 fois. May 07, 2024 pm 05:00 PM

Récemment, le milieu militaire a été submergé par la nouvelle : les avions de combat militaires américains peuvent désormais mener des combats aériens entièrement automatiques grâce à l'IA. Oui, tout récemment, l’avion de combat IA de l’armée américaine a été rendu public pour la première fois, dévoilant ainsi son mystère. Le nom complet de ce chasseur est Variable Stability Simulator Test Aircraft (VISTA). Il a été personnellement piloté par le secrétaire de l'US Air Force pour simuler une bataille aérienne en tête-à-tête. Le 2 mai, le secrétaire de l'US Air Force, Frank Kendall, a décollé à bord d'un X-62AVISTA à la base aérienne d'Edwards. Notez que pendant le vol d'une heure, toutes les actions de vol ont été effectuées de manière autonome par l'IA ! Kendall a déclaré : "Au cours des dernières décennies, nous avons réfléchi au potentiel illimité du combat air-air autonome, mais cela a toujours semblé hors de portée." Mais maintenant,

Les robots Tesla travaillent dans les usines, Musk : Le degré de liberté des mains atteindra 22 cette année ! Les robots Tesla travaillent dans les usines, Musk : Le degré de liberté des mains atteindra 22 cette année ! May 06, 2024 pm 04:13 PM

La dernière vidéo du robot Optimus de Tesla est sortie, et il peut déjà fonctionner en usine. À vitesse normale, il trie les batteries (les batteries 4680 de Tesla) comme ceci : Le responsable a également publié à quoi cela ressemble à une vitesse 20 fois supérieure - sur un petit "poste de travail", en sélectionnant et en sélectionnant et en sélectionnant : Cette fois, il est publié L'un des points forts de la vidéo est qu'Optimus réalise ce travail en usine, de manière totalement autonome, sans intervention humaine tout au long du processus. Et du point de vue d'Optimus, il peut également récupérer et placer la batterie tordue, en se concentrant sur la correction automatique des erreurs : concernant la main d'Optimus, le scientifique de NVIDIA Jim Fan a donné une évaluation élevée : la main d'Optimus est l'un des robots à cinq doigts du monde. le plus adroit. Ses mains ne sont pas seulement tactiles

IA explicable : Expliquer les modèles IA/ML complexes IA explicable : Expliquer les modèles IA/ML complexes Jun 03, 2024 pm 10:08 PM

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises

Cinq écoles d'apprentissage automatique que vous ne connaissez pas Cinq écoles d'apprentissage automatique que vous ne connaissez pas Jun 05, 2024 pm 08:51 PM

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

See all articles