Table des matières
Écart des prédictions par rapport à la réalité
Promotion du modèle
Niveaux d'adoption
Maison Périphériques technologiques IA Quels KPI peuvent être utilisés pour mesurer le succès des projets d'intelligence artificielle ?

Quels KPI peuvent être utilisés pour mesurer le succès des projets d'intelligence artificielle ?

Apr 10, 2023 am 09:21 AM
人工智能 机器学习 机器学习模型的关键

Un rapport de recherche publié par le cabinet de recherche IDC en juin 2020 a montré qu'environ 28 % des plans d'intelligence artificielle ont échoué. Les raisons citées dans le rapport étaient le manque d'expertise, le manque de données pertinentes et l'absence d'un environnement de développement suffisamment intégré. Afin d’établir une démarche d’amélioration continue du machine learning et éviter de rester bloqué, l’identification d’indicateurs clés de performance (KPI) est désormais une priorité.

Quels KPI peuvent être utilisés pour mesurer le succès des projets d'intelligence artificielle ?

Dans les hautes sphères de l'industrie, les data scientists peuvent définir les indicateurs de performance technique du modèle. Ils varieront en fonction du type d’algorithme utilisé. Dans le cas d'une régression visant à prédire la taille d'une personne en fonction de son âge par exemple, on peut recourir à des coefficients de détermination linéaires.

Une équation qui mesure la qualité des prédictions peut être utilisée : Si le carré du coefficient de corrélation est nul, la droite de régression détermine la distribution des points 0%. En revanche, si le coefficient est de 100 %, le nombre est égal à 1. Cela indique donc que la qualité des prévisions est très bonne.

Écart des prédictions par rapport à la réalité

Une autre mesure pour évaluer la régression est la méthode des moindres carrés, qui fait référence à la fonction de perte. Cela implique de quantifier l’erreur en calculant la somme des carrés des écarts entre la valeur réelle et la ligne prédite, puis d’ajuster le modèle en minimisant l’erreur quadratique. Dans la même logique, on peut utiliser la méthode de l'erreur absolue moyenne, qui consiste à calculer la moyenne des valeurs fondamentales des écarts.

Charlotte Pierron-Perlès, responsable des services stratégie, données et intelligence artificielle du cabinet de conseil français Capgemini, conclut : "En tout cas, cela revient à mesurer l'écart avec ce que l'on essaie de prédire

Par exemple, en classification." pour la détection du spam Dans l'algorithme, il est nécessaire de rechercher les faux positifs et les faux négatifs du spam. Pierron Perlès explique : « Nous avons par exemple développé pour un groupe de cosmétiques une solution de machine learning qui optimise l'efficacité d'une ligne de production. L'objectif était d'identifier les cosmétiques défectueux en début de chaîne pouvant provoquer des interruptions de production. avec les opérateurs de l'usine sur La discussion a suivi avec eux à la recherche d'un modèle pour compléter la détection même si cela impliquait de détecter les faux positifs, c'est-à-dire que les cosmétiques qualifiés pourraient être confondus avec des défauts »

Basé sur les concepts de faux positifs et de faux négatifs, autres. Trois métriques permettent l'évaluation des modèles de classification :

(1) Le rappel (R) fait référence à une mesure de sensibilité du modèle. C'est le rapport entre les vrais positifs correctement identifiés (en prenant comme exemple les tests de coronavirus positifs) et l'ensemble des vrais positifs qui auraient dû être détectés (tests de coronavirus positifs + tests de coronavirus négatifs qui étaient effectivement positifs) : R = vrais positifs / vrais positifs +Faux négatif.

(2) La précision (P) fait référence à la mesure de l'exactitude. Il s’agit du rapport entre les vrais positifs corrects (tests COVID-19 positifs) et tous les résultats déterminés comme positifs (tests COVID-19 positifs + tests COVID-19 négatifs) : P = vrais positifs / vrais positifs + faux positifs.

(3) La moyenne harmonique (F-score) mesure la capacité du modèle à donner des prédictions correctes et à rejeter d'autres prédictions : F=2×precision×recall/precision+recall

Promotion du modèle

Chef d'ESNKeyrus, France Senior Le data scientist David TsangHinSun a souligné : « Une fois qu'un modèle est construit, sa capacité de généralisation deviendra une métrique clé.

Alors, comment l'estimer ? En mesurant l’écart entre les prévisions et les résultats attendus, puis en comprenant comment cet écart évolue dans le temps. Il explique : "Après un certain temps, nous pouvons rencontrer des divergences. Cela peut être dû à un sous-apprentissage (ou à un surajustement) dû à un sous-entraînement de l'ensemble de données en termes de qualité et de quantité.

Alors sa solution, quelle est-elle." il? Par exemple, dans le cas des modèles de reconnaissance d’images, les réseaux génératifs antagonistes peuvent être utilisés pour augmenter le nombre d’images apprises par rotation ou distorsion. Autre technique (applicable aux algorithmes de classification) : le suréchantillonnage minoritaire synthétique, qui consiste à augmenter le nombre d'exemples peu fréquents dans l'ensemble de données grâce au suréchantillonnage.

Des désaccords peuvent également survenir en cas de surapprentissage. Dans cette configuration, le modèle ne se limitera pas aux corrélations attendues après la formation, mais en raison d'une surspécialisation, il capturera le bruit généré par les données de terrain et produira des résultats incohérents. DavidTsangHinSun a souligné : « Il est alors nécessaire de vérifier la qualité de l'ensemble des données de formation et éventuellement d'ajuster les poids des variables. »

Tandis que les indicateurs clés de performance (KPI) économiques demeurent. Stéphane Roder, PDG du cabinet de conseil français AIBuilders, estime : « Il faut se demander si le taux d'erreur est cohérent avec les enjeux métiers. Par exemple, la compagnie d'assurance Lemonade a développé un module de machine learning capable de répondre en 3 heures aux demandes des clients. minutes après le dépôt d'une réclamation. Les informations (y compris les photos) versent l'argent de l'assurance au client. Compte tenu des économies, un certain taux d'erreur entraîne des coûts tout au long de la durée de vie du modèle, notamment par rapport au coût total de possession (TCO). du développement à la maintenance, il est très important de vérifier cette mesure.

Niveaux d'adoption

Même au sein d'une même entreprise, les indicateurs de performance clés (KPI) attendus peuvent varier. Charlotte Pierron Perlès de Capgemini précise : « Nous avons développé un moteur de prévision de consommation pour un distributeur français d'envergure internationale. Il s'est avéré que les cibles précises du modèle différaient entre les produits vendus en grands magasins et les nouveaux produits. Les ventes de ces derniers dépendent de facteurs. , notamment celles liées à la réaction du marché, qui sont, par définition, moins contrôlables. »

Le dernier indicateur clé de performance est le niveau d’adoption. Charlotte Pierron-Perlès a déclaré : « Même si un modèle est de bonne qualité, il ne suffit pas à lui seul. Cela nécessite le développement de produits d'intelligence artificielle avec une expérience orientée utilisateur qui puisse être utilisée pour les entreprises et concrétiser les promesses de la machine. apprentissage."

Stéphane Roder Le résumé indique : « Cette expérience utilisateur permettra également aux utilisateurs de fournir des commentaires, ce qui contribuera à fournir des connaissances sur l'IA en dehors du flux de données de production quotidien. »​

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Où trouver la courte de la grue à atomide atomique
1 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Jun 28, 2024 am 03:51 AM

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Assistant de codage d'IA augmenté par le contexte utilisant Rag et Sem-Rag Assistant de codage d'IA augmenté par le contexte utilisant Rag et Sem-Rag Jun 10, 2024 am 11:08 AM

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Le réglage fin peut-il vraiment permettre au LLM d'apprendre de nouvelles choses : l'introduction de nouvelles connaissances peut amener le modèle à produire davantage d'hallucinations Le réglage fin peut-il vraiment permettre au LLM d'apprendre de nouvelles choses : l'introduction de nouvelles connaissances peut amener le modèle à produire davantage d'hallucinations Jun 11, 2024 pm 03:57 PM

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Sept questions d'entretien technique Cool GenAI et LLM Sept questions d'entretien technique Cool GenAI et LLM Jun 07, 2024 am 10:06 AM

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Jul 25, 2024 am 06:42 AM

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Cinq écoles d'apprentissage automatique que vous ne connaissez pas Cinq écoles d'apprentissage automatique que vous ne connaissez pas Jun 05, 2024 pm 08:51 PM

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Les performances de SOTA, la méthode d'IA de prédiction d'affinité protéine-ligand multimodale de Xiamen, combinent pour la première fois des informations sur la surface moléculaire Les performances de SOTA, la méthode d'IA de prédiction d'affinité protéine-ligand multimodale de Xiamen, combinent pour la première fois des informations sur la surface moléculaire Jul 17, 2024 pm 06:37 PM

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Préparant des marchés tels que l'IA, GlobalFoundries acquiert la technologie du nitrure de gallium de Tagore Technology et les équipes associées Préparant des marchés tels que l'IA, GlobalFoundries acquiert la technologie du nitrure de gallium de Tagore Technology et les équipes associées Jul 15, 2024 pm 12:21 PM

Selon les informations de ce site Web du 5 juillet, GlobalFoundries a publié un communiqué de presse le 1er juillet de cette année, annonçant l'acquisition de la technologie de nitrure de gallium (GaN) et du portefeuille de propriété intellectuelle de Tagore Technology, dans l'espoir d'élargir sa part de marché dans l'automobile et Internet. des objets et des domaines d'application des centres de données d'intelligence artificielle pour explorer une efficacité plus élevée et de meilleures performances. Alors que des technologies telles que l’intelligence artificielle générative (GenerativeAI) continuent de se développer dans le monde numérique, le nitrure de gallium (GaN) est devenu une solution clé pour une gestion durable et efficace de l’énergie, notamment dans les centres de données. Ce site Web citait l'annonce officielle selon laquelle, lors de cette acquisition, l'équipe d'ingénierie de Tagore Technology rejoindrait GF pour développer davantage la technologie du nitrure de gallium. g

See all articles