Maison > Opération et maintenance > exploitation et maintenance Linux > Plusieurs fonctions liées à la gestion de la mémoire Linux

Plusieurs fonctions liées à la gestion de la mémoire Linux

青灯夜游
Libérer: 2023-04-10 16:55:02
original
1367 Les gens l'ont consulté

Fonctions liées à la gestion de la mémoire Linux : 1. kmalloc(), utilisé pour l'allocation de mémoire en mode noyau ; 2. vmalloc(), généralement utilisé pour les séquences plus grandes qui n'existent que dans le logiciel (sans signification matérielle correspondante) Le tampon alloue de la mémoire ; . Les fonctions alloc_page() et alloc_pages() peuvent être allouées dans l'espace noyau ; 4. La série de fonctions __get_free_pages() renvoie l'adresse virtuelle d'une ou plusieurs pages ;

Plusieurs fonctions liées à la gestion de la mémoire Linux

L'environnement d'exploitation de ce tutoriel : système linux7.3, ordinateur Dell G3.

Cet article décrit plusieurs fonctions d'allocation de mémoire courantes dans le noyau Linux ainsi que leurs similitudes et différences, afin d'avoir une meilleure compréhension du mécanisme d'allocation de mémoire sous-jacent de Linux.

1. La fonction kmalloc()

kmalloc() est similaire à notre fonction malloc() commune. La première est utilisée pour l'allocation de mémoire en mode noyau et la seconde est utilisée pour le mode utilisateur. La fonction
kmalloc() alloue un espace de stockage continu dans la mémoire physique, et comme la fonction malloc(), elle n'effacera pas les données d'origine à l'intérieur si la mémoire est suffisante, sa vitesse d'allocation est très rapide. Son prototype est le suivant :

static inline void *kmalloc(size_t size, gfp_t flags);	/*返回的是虚拟地址*/
Copier après la connexion
  • size : La taille mémoire à allouer. En raison du mécanisme de gestion de la mémoire Linux, la mémoire ne peut être allouée qu'en fonction de la taille de la page (généralement 4 Ko pour les machines 32 bits et 8 Ko pour les machines 64 bits). Cela provoque le retour du système lorsque nous n'avons besoin que de quelques octets. mémoire. Une page de mémoire est évidemment extrêmement inutile. Par conséquent, contrairement à malloc, la méthode de traitement de kmalloc est la suivante : le noyau alloue d'abord une série de pools de mémoire de différentes tailles (32B, 64B, 128B,..., 128KB). Lorsque la mémoire doit être allouée, le système allouera des pools de mémoire plus importants. supérieur ou égal à Donnez-lui le plus petit pool de mémoire nécessitant de la mémoire. Autrement dit, la mémoire allouée par kmalloc a un minimum de 32 octets et un maximum de 128 Ko. S'il dépasse 128 Ko, vous devez essayer d'autres fonctions d'allocation de mémoire, telles que vmalloc().
  • flag : Ce paramètre est utilisé pour contrôler le comportement de la fonction. Le plus couramment utilisé est GFP_KERNEL, ce qui signifie que lorsqu'il n'y a actuellement pas assez de mémoire allouée, le processus se met en veille une fois que le système échange le contenu. du tampon sur le disque dur, suffisamment de mémoire est obtenue. Ensuite, réveillez le processus et allouez la mémoire. Voir l'image ci-dessous pour plus d'indicateurs :
    Plusieurs fonctions liées à la gestion de la mémoire Linux
  • Lorsque vous utilisez l'indicateur GFP_KERNEL pour demander de la mémoire, s'il ne peut pas être satisfait temporairement, le processus se mettra en veille et attendra la page, ce qui provoquera un blocage, elle ne pourra donc pas être utilisée. lors de l'interruption du contexte ou du maintien d'un verrou tournant, GFP_KERNE s'applique à la mémoire. Par conséquent, il ne peut pas bloquer dans des contextes autres que des processus tels que les gestionnaires d'interruptions, les tasklets et les minuteurs du noyau. Dans ce cas, le pilote doit utiliser l'indicateur GFP_ATOMIC pour demander de la mémoire. Lorsque vous utilisez l'indicateur GFP_ATOMIC pour demander de la mémoire, s'il n'y a pas de page libre, elle reviendra directement sans attendre.
  • En plus des indicateurs répertoriés dans le tableau ci-dessus, il comprend également les éléments suivants :
  • _ _GFP_DMA (doit être alloué dans une zone mémoire compatible DMA)
  • _ _GFP_HIGHMEM (indique que la mémoire allouée peut être situé dans la mémoire haut de gamme)
  • _ _GFP_COLD (obligatoire Une page qui n'a pas été consultée depuis longtemps)
  • _ _GFP_NOWARN (Empêche le noyau d'émettre un avertissement lorsqu'une allocation ne peut pas être remplie)
  • _ _GFP_HIGH (Élevé demande prioritaire, permet d'obtenir la dernière page mémoire réservée par le noyau pour une utilisation d'urgence )
  • _ _GFP_REPEAT (faites de votre mieux pour réessayer si l'allocation échoue)
  • _ _GFP_NOFAIL (la marque permet uniquement une application réussie, non recommandée)
  • _ _GFP_NORETRY (si l'application échoue, abandonnez immédiatement)
  • Utilisez kmalloc() pour demander de la mémoire. Elle doit être libérée en utilisant kfree(). L'utilisation de cette fonction est similaire à free() dans l'espace utilisateur. . kfree()释放,这个函数的用法和用户空间的 free()类似。

2、vmalloc()

vmalloc()一般用在为只存在于软件中(没有对应的硬件意义)的较大的顺序缓冲区分配内存,当内存没有足够大的连续物理空间可以分配时,可以用该函数来分配虚拟地址连续但物理地址不连续的内存。由于需要建立新的页表,所以它的开销要远远大于kmalloc及后面将要讲到的__get_free_pages()函数。且vmalloc()不能用在原子上下文中,因为它的内部实现使用了标志为 GFP_KERNEL 的kmalloc()

🎜🎜2. vmalloc()🎜🎜🎜vmalloc() est généralement utilisé car il n'existe que dans le logiciel (n'a pas de signification matérielle correspondante) Un tampon séquentiel plus grand alloue de la mémoire Lorsque la mémoire ne dispose pas d'un espace physique continu suffisamment grand à allouer, cette fonction peut être utilisée pour allouer de la mémoire avec des adresses virtuelles continues mais des adresses physiques non continues. Puisqu'une nouvelle table de pages doit être créée, sa surcharge est bien supérieure à celle de kmalloc et de la fonction __get_free_pages() dont nous parlerons plus tard. Et vmalloc() ne peut pas être utilisé dans un contexte atomique car son implémentation interne utilise kmalloc() avec l'indicateur GFP_KERNEL. Son prototype de fonction est le suivant : 🎜
void *vmalloc(unsigned long size);
void vfree(const void *addr);
Copier après la connexion
  • 使用 vmalloc 函数的一个例子函数是 create_module()系统调用,它利用 vmalloc()函数来获取被创建模块需要的内存空间。
  • 内存分配是一项要求严格的任务,无论什么时候,都应该对返回值进行检测。
  • 在驱动编程中可以使用copy_from_user()对内存进行使用。下面举一个使用vmalloc函数的示例:
static int xxx(...)
{
	...
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
	if(!cpuid_entries)
	goto out;
	if(copy_from_user(cpuid_entries, entries, cpuid->nent * sizeof(struct kvm_cpuid_entry)))
		goto out_free;
	for(i=0; i<cpuid->nent; i++){
		vcpuid->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
		...
		vcpuid->arch.cpuid_entries[i].index = 0;
	}
	...
out_free:
	vfree(cpuid_entries);
out:
	return r;
}
Copier après la connexion

3、页分配函数

在linux中,内存分配是以页为单位的,32位机中一页为4KB,64位机中,一页为8KB,但具体还有根据平台而定。
根据返回值类型的不同,页分配函数分为两类,一是返回物理页地址,二是返回虚拟地址。虚拟地址和物理地址起始相差一个固定的偏移量。

#define __pa(x) ((x) - PAGE_OFFSET)
static inline unsigned long virt_to_phys(volatile void *address)
{
	return __pa((void *)address);
}

#define __va(x) ((x) + PAGE_OFFSET)
static inline  void* phys_to_virt(unsigned long address)
{
	return __va(address);
}
Copier après la connexion

Plusieurs fonctions liées à la gestion de la mémoire Linux

根据返回页面数目分类,分为仅返回单页面的函数和返回多页面的函数。

3.1 alloc_page()和alloc_pages()函数

该函数定义在头文件/include/linux/gfp.h中,它既可以在内核空间分配,也可以在用户空间分配,它返回分配的第一个页的描述符而非首地址,其原型为:

#define alloc_page(gfp_mask)  alloc_pages(gfp_mask, 0)
#define alloc_pages(gfp_mask, order) alloc_pages_node(numa_node_id(), gfp_mask, order)  //分配连续2^order个页面
static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 
{
	if(unlikely(order >= MAX_ORDER))
		return NULL;
	if(nid < 0)
		nid = numa_node_id();
	return __alloc_pages(gfp_mask, order, noed_zonelist(nid, gfp_mask));
}
Copier après la connexion

3.2 __get_free_pages()系列函数

它是kmalloc函数实现的基础,返回一个或多个页面的虚拟地址。该系列函数/宏包括 get_zeroed_page()_ _get_free_page()_ _get_free_pages()。在使用时,其申请标志的值及含义与 kmalloc()完全一样,最常用的是 GFP_KERNEL 和 GFP_ATOMIC。

/*分配多个页并返回分配内存的首地址,分配的页数为2^order,分配的页不清零。
order 允许的最大值是 10(即 1024 页)或者 11(即 2048 页),依赖于具体
的硬件平台。*/
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
{
	struct page *page;
	page = alloc_pages(gfp_mask, order);
	if(!page)
		return 0;
	return (unsigned long)page_address(page);
}

#define __get_free_page(gfp_mask)  __get_free_pages(gfp_mask, 0)

/*该函数返回一个指向新页的指针并且将该页清零*/
unsigned long get_zeroed_page(unsigned int flags);
Copier après la connexion
  • 使用_ _get_free_pages()系列函数/宏申请的内存应使用free_page(addr)free_pages(addr, order)函数释放:
#define __free_page(page) __free_pages((page), 0)
#define free_page(addr) free_pages((addr), 0)

void free_pages(unsigned long addr, unsigned int order)
{
	if(addr != 0){
		VM_BUG_ON(!virt_addr_valid((void*)addr));
		__free_pages(virt_to_page((void *)addr), order);
	}
}

void __free_pages(struct page *page, unsigned int order)
{
	if(put_page_testzero(page)){
		if(order == 0)
			free_hot_page(page);
		else
			__free_pages_ok(page, order);
	}
}
Copier après la connexion

free_pages()函数是调用__free_pages()函数完成内存释放的。

4、slab缓存

  • 当在驱动程序中,遇到反复分配、释放同一大小的内存块时(例如,inode、task_struct等),建议使用内存池技术(对象在前后两次被使用时均分配在同一块内存或同一类内存空间,且保留了基本的数据结构,这大大提高了效率)。在linux中,有一个叫做slab分配器的内存池管理技术,内存池使用的内存区叫做后备高速缓存。
  • salb相关头文件在linux/slab.h中,在使用后备高速缓存前,需要创建一个kmem_cache的结构体。

4.1 创建slab缓存区

该函数创建一个slab缓存(后备高速缓冲区),它是一个可以驻留任意数目全部同样大小的后备缓存。其原型如下:

struct kmem_cache *kmem_cache_create(const char *name, size_t size, \
									 size_t align, unsigned long flags,\
									 void (*ctor)(void *, struct kmem_cache *, unsigned long),\
									 void (*dtor)(void *, struct kmem_cache *, unsigned ong)));
Copier après la connexion

其中:
name:创建的缓存名;
size:可容纳的缓存块个数;
align:后备高速缓冲区中第一个内存块的偏移量(一般置为0);
flags:控制如何进行分配的位掩码,包括 SLAB_NO_REAP(即使内存紧缺也不自动收缩这块缓存)、SLAB_HWCACHE_ALIGN ( 每 个 数 据 对 象 被 对 齐 到 一 个 缓 存 行 )、SLAB_CACHE_DMA(要求数据对象在 DMA 内存区分配)等);
ctor:是可选的内存块对象构造函数(初始化函数);
dtor:是可选的内存对象块析构函数(释放函数)。

4.2 分配slab缓存函数

一旦创建完后备高速缓冲区后,就可以调用kmem_cache_alloc()在缓存区分配一个内存块对象了,其原型如下:

void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags);
Copier après la connexion

cachep指向开始分配的后备高速缓存,flags与传给kmalloc函数的参数相同,一般为GFP_KERNEL。

4.3 释放slab缓存

该函数释放一个内存块对象:

void *kmem_cache_free(struct kmem_cache *cachep, void *objp);
Copier après la connexion

4.4 销毁slab缓存

kmem_cache_create对应的是销毁函数,释放一个后备高速缓存:

int kmem_cache_destroy(struct kmem_cache *cachep);
Copier après la connexion

它必须等待所有已经分配的内存块对象被释放后才能释放后备高速缓存区。

4.5 slab缓存使用举例

创建一个存放线程结构体(struct thread_info)的后备高速缓存,因为在linux中涉及频繁的线程创建与释放,如果使用__get_free_page()函数会造成内存的大量浪费,效率也不高。所以在linux内核的初始化阶段就创建了一个名为thread_info的后备高速缓存,代码如下:

/* 创建slab缓存 */
static struct kmem_cache *thread_info_cache;
thread_info_cache = kmem_cache_create("thread_info", sizeof(struct thread_info), \
										SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);

/* 分配slab缓存 */
struct thread_info *ti;
ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);

/* 使用slab缓存 */
...
/* 释放slab缓存 */
kmem_cache_free(thread_info_cache, ti);
kmem_cache_destroy(thread_info_cache);
Copier après la connexion

5、内存池

在 Linux 内核中还包含对内存池的支持,内存池技术也是一种非常经典的用于分配大量小对象的后备缓存技术。

5.1 创建内存池

mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, \
 							mempool_free_t *free_fn, void *pool_data);
Copier après la connexion

mempool_create()函数用于创建一个内存池,min_nr 参数是需要预分配对象的数目,alloc_fn 和 free_fn 是指向内存池机制提供的标准对象分配和回收函数的指针,其原型分别为:

typedef void *(mempool_alloc_t)(int gfp_mask, void *pool_data); 

typedef void (mempool_free_t)(void *element, void *pool_data);
Copier après la connexion

pool_data 是分配和回收函数用到的指针,gfp_mask 是分配标记。只有当_ _GFP_WAIT 标记被指定时,分配函数才会休眠。

5.2 分配和回收对象

在内存池中分配和回收对象需由以下函数来完成:

void *mempool_alloc(mempool_t *pool, int gfp_mask); 
void mempool_free(void *element, mempool_t *pool);
Copier après la connexion

mempool_alloc()用来分配对象,如果内存池分配器无法提供内存,那么就可以用预分配的池。

5.3 销毁内存池

void mempool_destroy(mempool_t *pool);
Copier après la connexion

mempool_create()函数创建的内存池需由 mempool_destroy()来回收。

相关推荐:《Linux视频教程

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Derniers numéros
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal