


Le grand modèle de langage scientifique de l'IA est très populaire. Vous pouvez créer toutes sortes d'ordinateurs mathématiques et biologiques. Vous pouvez également écrire du code et rédiger des critiques.
Le moteur de recherche IA évolue encore ? !
Donnez un sujet à cette IA, et elle vous donnera une critique de l'article en quelques minutes, et elle fournira également des citations pour l'article lui-même.
Ou saisissez un nom scientifique, et l'IA peut rapidement générer un Wikipédia dédié à ce nom.
Cette IA s'appelle Galactica (abréviation : GAL). Il s'agit du dernier grand modèle de langage scientifique open source qui transforme l'IA en productivité scientifique.
Et elle réalise aussi la « grande unification » des disciplines, mathématiques, physique, informatique…cette IA peut être utilisée.
Dès que le modèle a été publié, il a rapidement suscité de vives discussions parmi les internautes. Actuellement, les tweets concernés comptent près de 150 000 vues, et le cumul des likes, retweets et citations a dépassé les 5 000.
L'ancien responsable technique de Facebook est également venu le soutenir.
Certains internautes en ont personnellement fait l'expérience, et la revue de littérature qu'ils ont rédigée « a l'air plutôt bonne », et ont même demandé :
Est-ce qu'il sera capable de générer de nouvelles idées dans la prochaine étape ?
En fait, rédiger des revues de littérature et produire Wikipédia ne sont qu'une partie des fonctions de GAL. En dehors de celles-ci, il peut également répondre à certaines questions professionnelles, rédiger des codes scientifiques, annoter des molécules et des protéines...
Jetons un coup d'œil. aux effets spécifiques. Voyons ~
peut être utilisé comme un outil de production scientifique
En matière de productivité scientifique, elle est définitivement indissociable de la recherche d'articles. Non, GAL peut vous aider à résoudre ce problème.
Il couvre cinq disciplines scientifiques : l'apprentissage automatique, les mathématiques, l'informatique, la biologie et la physique.
Sélectionnez un sujet, puis entrez le sujet d'article que vous recherchez dans la case de gauche, et GAL à droite recommandera l'article le plus approprié à la lecture.
En plus de recommander des articles, GAL a également une fonction plus pratique : générer des notes de cours.
Par exemple, si vous souhaitez suivre un pré-cours sur la théorie fonctionnelle de la densité (DFT), mais que vous êtes trop paresseux pour rédiger une note de cours, vous pouvez simplement la GAL et le faire en quelques minutes (tête de chien manuelle).
GAL peut également être utilisé pour annoter des molécules et des protéines. Ce qui suit est le manuel d'utilisation de RDKit (qui peut générer des descripteurs moléculaires pour l'apprentissage automatique) généré par GAL.
GAL s'est également occupé de quelques détails !
Par exemple, si vous ne comprenez pas certaines formules et codes mathématiques complexes, vous pouvez laisser le soin à GAL, il peut les traduire directement en langue vernaculaire pour vous.
Non seulement cela, il peut également réaliser une conversion entre des formules mathématiques et des codes, ou une conversion entre différents types de codes.
Plus important encore, il dispose également de formules simplifiées et de fonctions de vérification des erreurs.
Comment faire ?
GAL peut réaliser des fonctions aussi complexes, nous devons donc mentionner son ensemble de données de formation.
Selon les informations officielles, GAL est formé sur un nouvel ensemble de données scientifiques de haute qualité appelé NatureBook, qui permet au modèle d'utiliser la terminologie scientifique, les formules mathématiques et chimiques et le code source.
Comprend plus de 48 millions d'articles, manuels et notes de cours, ainsi que des millions de composés et de protéines, des sites Web scientifiques, des encyclopédies et bien plus encore.
De plus, pour rechercher des articles et normaliser les citations, l'ensemble de données de GAL contient plus de 360 millions de citations contextuelles et plus de 50 millions de références uniques normalisées dans différentes sources.
Après avoir disposé d’un ensemble de données aussi énorme, nous serons confrontés à deux problèmes.
La première question est de savoir comment gérer ces ensembles de données de haute qualité. Pour y parvenir, GAL utilise deux étapes :
Toutes les données sont traitées dans un format de balisage commun pour briser les barrières entre les données provenant de diverses sources.
La pré-formation contient des ensembles de données pour des tâches spécifiques, ce qui garantit que vous pouvez être plus professionnel lorsque vous traitez des tâches spécifiques.
Une autre question est : Comment concevoir l’interaction de l’interface ?
Tout d’abord, comme mentionné ci-dessus, GAL peut prendre en charge différents types de tâches.
Par conséquent, diverses tâches sont classées lors de la conception de l'interaction d'interface. Différentes classifications prendront en charge différents types de données.
Étant donné que GAL dispose d'un ensemble de données scientifiques hautement gérées et de haute qualité, comment se compare-t-il aux autres modèles ?
Téléchargez les données directement !
En termes de raisonnement, les avantages de GAL se démarquent. En mathématiques MMLU (compréhension du langage multitâche à grande échelle), ses performances sont meilleures que celles de Chinchilla. En termes de mathématiques, ses performances sont également meilleures que celles du Palm 540B et du GPT-3. 175B.
Bien que GAL n'ait pas été formé sur des ensembles de données générales, ses performances sur BIG-bench sont toujours meilleures que BLOOM et OPT-175B.
Si vous ressentez des démangeaisons après l'avoir lu, arrêtez-le d'abord !
Portail : https://galactica.org/
Lien de référence : [1]https://twitter.com/paperswithcode/status/1592546933679476736[2]https://github.com/paperswithcode/galai[3 ] https://galactica.org/static/paper.pdf
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Une explication détaillée des attributs d'acide de base de données Les attributs acides sont un ensemble de règles pour garantir la fiabilité et la cohérence des transactions de base de données. Ils définissent comment les systèmes de bases de données gérent les transactions et garantissent l'intégrité et la précision des données même en cas de plantages système, d'interruptions d'alimentation ou de plusieurs utilisateurs d'accès simultanément. Présentation de l'attribut acide Atomicité: une transaction est considérée comme une unité indivisible. Toute pièce échoue, la transaction entière est reculée et la base de données ne conserve aucune modification. Par exemple, si un transfert bancaire est déduit d'un compte mais pas augmenté à un autre, toute l'opération est révoquée. BeginTransaction; UpdateAccountSsetBalance = Balance-100Wh

MySQL peut renvoyer les données JSON. La fonction JSON_Extract extrait les valeurs de champ. Pour les requêtes complexes, envisagez d'utiliser la clause pour filtrer les données JSON, mais faites attention à son impact sur les performances. Le support de MySQL pour JSON augmente constamment, et il est recommandé de faire attention aux dernières versions et fonctionnalités.

Clause SQLLIMIT: Contrôlez le nombre de lignes dans les résultats de la requête. La clause limite dans SQL est utilisée pour limiter le nombre de lignes renvoyées par la requête. Ceci est très utile lors du traitement de grands ensembles de données, des affichages paginés et des données de test, et peut améliorer efficacement l'efficacité de la requête. Syntaxe de base de la syntaxe: selectColumn1, Column2, ... FromTable_NamelimitNumber_Of_Rows; Number_OF_ROWS: Spécifiez le nombre de lignes renvoyées. Syntaxe avec décalage: selectColumn1, Column2, ... FromTable_Namelimitoffset, numéro_of_rows; décalage: sauter

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

Une surveillance efficace des bases de données MySQL et MARIADB est essentielle pour maintenir des performances optimales, identifier les goulots d'étranglement potentiels et assurer la fiabilité globale du système. Prometheus Mysql Exportateur est un outil puissant qui fournit des informations détaillées sur les mesures de base de données qui sont essentielles pour la gestion et le dépannage proactifs.

La clé primaire MySQL ne peut pas être vide car la clé principale est un attribut de clé qui identifie de manière unique chaque ligne dans la base de données. Si la clé primaire peut être vide, l'enregistrement ne peut pas être identifié de manière unique, ce qui entraînera une confusion des données. Lorsque vous utilisez des colonnes entières ou des UUIdes auto-incrémentales comme clés principales, vous devez considérer des facteurs tels que l'efficacité et l'occupation de l'espace et choisir une solution appropriée.

Il est impossible de visualiser le mot de passe MongoDB directement via NAVICAT car il est stocké sous forme de valeurs de hachage. Comment récupérer les mots de passe perdus: 1. Réinitialiser les mots de passe; 2. Vérifiez les fichiers de configuration (peut contenir des valeurs de hachage); 3. Vérifiez les codes (May Code Hardcode).

Explication détaillée de la clause SqlorderBy: le tri efficace de la clause de données d'ordre de données est une déclaration clé de SQL utilisée pour trier les ensembles de résultats de requête. Il peut être organisé en ordre ascendant (ASC) ou ordre décroissant (DESC) dans des colonnes uniques ou plusieurs colonnes, améliorant considérablement la lisibilité des données et l'efficacité de l'analyse. OrderBy Syntax selectColumn1, Column2, ... FromTable_NameOrderByColumn_Name [ASC | DESC]; Column_name: Triez par colonne. ASC: Ascendance Order Sort (par défaut). DESC: Trier en ordre décroissant. ORDERBY Fonctionnalités principales: Tri multi-colonnes: prend en charge le tri de plusieurs colonnes et l'ordre des colonnes détermine la priorité du tri. depuis
