Comment implémenter MapReduce en langage Go
MapReduce est un modèle de programmation largement utilisé dans le traitement de données à grande échelle, qui peut traiter efficacement les données et renvoyer les résultats aux utilisateurs. Golang (également connu sous le nom de langage Go) est un langage de programmation open source de plus en plus populaire. Il a été publié par Google en 2009 et a été largement salué pour sa concurrence, sa compilation rapide et sa syntaxe simple. Alors, comment combiner ces deux technologies pour parvenir à un traitement efficace des données ?
Tout d'abord, nous devons comprendre les idées et les processus de base de MapReduce. MapReduce divise les ensembles de données à grande échelle en plusieurs petits morceaux, et chaque morceau est traité via une fonction Map, le convertissant en résultat intermédiaire d'une autre paire clé/valeur. Ensuite, ces résultats intermédiaires seront classés et triés, et enfin traités via la fonction Réduire pour obtenir les résultats finaux.
Ensuite, nous présenterons le processus d'implémentation de MapReduce en langage Go.
Tout d’abord, nous devons installer l’environnement linguistique Go. Pour les méthodes d'installation, veuillez consulter le site officiel de Go.
Ensuite, nous devons télécharger et installer une bibliothèque MapReduce qui prend en charge la concurrence. Cet article présentera la méthode d'implémentation d'utilisation de Hadoop MapReduce, vous devez donc télécharger et installer Hadoop. Pour le processus d'installation de Hadoop, veuillez vous référer à la documentation officielle.
Enfin, nous implémentons MapReduce comme suit :
- Téléchargez les données à traiter vers HDFS (Hadoop Distributed File System) dans le cluster Hadoop.
- Écrivez les fonctions Map et Reduction en utilisant le langage Go et regroupez-les dans un fichier exécutable.
La fonction de la fonction Map est de diviser les données d'entrée en plusieurs petits morceaux pour le traitement et de mapper les données d'entrée en résultats intermédiaires de paires clé/valeur. La fonction Réduire a pour fonction de regrouper les résultats intermédiaires selon des clés, puis de réduire les résultats regroupés.
- Téléchargez le fichier exécutable packagé sur le cluster Hadoop.
- Démarrez la tâche Hadoop MapReduce et indiquez à Hadoop le chemin des données d'entrée, le chemin des résultats de sortie et le chemin du programme MapReduce.
- Attendez la fin de la tâche MapReduce et les résultats finaux seront stockés dans le chemin de sortie spécifié.
Le processus d'implémentation de MapReduce est similaire à celui des programmes en langage Go ordinaires, mais vous devez faire attention aux points suivants :
- Dans la fonction Map, vous devez d'abord lire les données du fichier d'entrée, puis traiter les données.
- Dans la fonction Réduire, il convient de noter que les données avec la même clé seront réduites au même Réducteur, donc des statistiques ou des opérations de calcul doivent être effectuées sur les données avec la même clé.
- Lors du téléchargement de fichiers, vous devez télécharger les fichiers sur HDFS dans le cluster Hadoop au lieu de les télécharger directement sur le système de fichiers local.
- Lors du démarrage d'une tâche MapReduce, vous devez indiquer à Hadoop le chemin des données d'entrée, le chemin des résultats de sortie et le chemin du programme MapReduce afin que Hadoop puisse exécuter la tâche correctement.
En bref, l'utilisation du langage Go pour implémenter MapReduce peut considérablement améliorer l'efficacité et la simultanéité du traitement des données. Grâce à la combinaison des langages Hadoop et Go, nous pouvons facilement réaliser un traitement de données à grande échelle efficace et flexible.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

OpenSSL, en tant que bibliothèque open source largement utilisée dans les communications sécurisées, fournit des algorithmes de chiffrement, des clés et des fonctions de gestion des certificats. Cependant, il existe des vulnérabilités de sécurité connues dans sa version historique, dont certaines sont extrêmement nocives. Cet article se concentrera sur les vulnérabilités et les mesures de réponse communes pour OpenSSL dans Debian Systems. DebianopenSSL CONNUTS Vulnérabilités: OpenSSL a connu plusieurs vulnérabilités graves, telles que: la vulnérabilité des saignements cardiaques (CVE-2014-0160): cette vulnérabilité affecte OpenSSL 1.0.1 à 1.0.1F et 1.0.2 à 1.0.2 Versions bêta. Un attaquant peut utiliser cette vulnérabilité à des informations sensibles en lecture non autorisées sur le serveur, y compris les clés de chiffrement, etc.

L'article explique comment utiliser l'outil PPROF pour analyser les performances GO, notamment l'activation du profilage, la collecte de données et l'identification des goulots d'étranglement communs comme le processeur et les problèmes de mémoire. COMMANDE: 159

L'article traite des tests d'unité d'écriture dans GO, couvrant les meilleures pratiques, des techniques de moquerie et des outils pour une gestion efficace des tests.

Problème de threading de file d'attente dans Go Crawler Colly explore le problème de l'utilisation de la bibliothèque Crawler Crawler dans le langage Go, les développeurs rencontrent souvent des problèmes avec les threads et les files d'attente de demande. � ...

La bibliothèque utilisée pour le fonctionnement du numéro de point flottante dans le langage go présente comment s'assurer que la précision est ...

Cet article présente une variété de méthodes et d'outils pour surveiller les bases de données PostgreSQL sous le système Debian, vous aidant à saisir pleinement la surveillance des performances de la base de données. 1. Utilisez PostgreSQL pour reprendre la surveillance Afficher PostgreSQL lui-même offre plusieurs vues pour surveiller les activités de la base de données: PG_STAT_ACTIVITY: affiche les activités de la base de données en temps réel, y compris les connexions, les requêtes, les transactions et autres informations. PG_STAT_REPLIcation: surveille l'état de réplication, en particulier adapté aux grappes de réplication de flux. PG_STAT_DATABASE: Fournit des statistiques de base de données, telles que la taille de la base de données, les temps de validation / recul des transactions et d'autres indicateurs clés. 2. Utilisez l'outil d'analyse de journaux pgbadg

L'article traite de la commande GO FMT dans GO Programming, qui formate le code pour adhérer aux directives de style officiel. Il met en évidence l'importance de GO FMT pour maintenir la cohérence du code, la lisibilité et la réduction des débats de style. Meilleures pratiques pour

Chemin d'apprentissage du backend: le parcours d'exploration du front-end à l'arrière-end en tant que débutant back-end qui se transforme du développement frontal, vous avez déjà la base de Nodejs, ...
