Maison > Périphériques technologiques > IA > Partage du CIO : l'informatique d'entreprise devrait utiliser l'IA générative avec prudence à l'avenir

Partage du CIO : l'informatique d'entreprise devrait utiliser l'IA générative avec prudence à l'avenir

WBOY
Libérer: 2023-04-11 15:49:03
avant
1651 Les gens l'ont consulté


Partage du CIO : l'informatique d'entreprise devrait utiliser l'IA générative avec prudence à l'avenir

Vince Kellen, directeur de l'information à l'Université de Californie à San Diego (UCSD), est bien conscient des limites bien documentées de ChatGPT, DALL-E et d'autres technologies d'IA générative : les réponses générées peuvent ne pas être réalistes, les images générées peuvent également manquer d'intégrité et la sortie peut être biaisée. Mais il va quand même de l’avant, affirmant que les employés utilisent déjà ChatGPT pour rédiger du code et des descriptions de poste.

La technologie de génération de texte d'OpenAI, ChatGPT et la technologie de génération d'images DALL-E, sont parmi les plus importantes d'une série de modèles de langage à grande échelle (également appelés modèles de langage génératifs ou IA générative) qui ont captivé l'imagination du public en répondant à des demandes écrites. pour générer une variété de contenus de réponse, depuis les documents texte et les images jusqu'au code de programmation.

Kellen estime que le code généré par ChatGPT est un outil de productivité, tout comme le compilateur est une amélioration du langage assembleur. « Créer des éléments pour des bibliothèques et des logiciels n'est pas différent de rechercher sur GitHub », a-t-il déclaré, « et nous l'utilisons également pour rédiger des descriptions de poste sensibles au contenu et au format. Vous pouvez ensuite passer très rapidement à l'édition, en recherchant les erreurs. et des zones de confusion." "Bien que cette technologie en soit encore à ses débuts, on ne peut nier l'impact qu'elle a déjà sur certaines applications d'entreprise, telles que celles qui sont gourmandes en contenu et en flux de travail, mais vous devez procéder avec prudence."

Prêt pour les bonnes applications

Oliver Wittmaier, directeur de l'information et chef de produit chez DB SYSTEL, a déclaré que l'IA générative est prête pour le codage, les flux de travail de gestion, le raffinement des données et les cas d'utilisation simples tels que la prédiction (remplissez le formulaire), DB SYSTEL est une filiale à 100 % de DB AG et le partenaire numérique de toutes les sociétés du groupe. Il a déclaré que dans l'industrie des transports, "l'intelligence artificielle peut affecter directement ou indirectement la prévention, le pilotage et la gestion des embouteillages pendant le transport".

La génération de contenu est également un domaine d'intérêt particulier pour Michal Cenkl, directeur de l'innovation et de l'expérimentation chez Mitre. . Actuellement, son équipe étudie deux utilisations de cette technologie, dans les domaines intellectuel et professionnel. « La première est si je souhaite écrire un e-mail à l’un de nos sponsors résumant le travail que nous effectuons et le travail qui le concerne, et c’est dans le contexte des communications que nous avons déjà eues avec lui. Cette technologie est incroyablement puissante.

Le deuxième concerne la dotation en personnel du projet. En règle générale, Cenkl examine les curriculum vitae et effectue une recherche basée sur les étiquettes de compétences pour trouver les candidats qui correspondent au projet. L’IA générative peut y contribuer. "Par exemple, je pourrais demander : "Que peut faire Michael sur ce projet ?" pour résumer ce qu'il peut faire en fonction de ce qu'il fait actuellement, afin que je n'aie pas à chercher dans mon CV

. Le détaillant de voitures d'occasion CarMax utilise l'IA générative depuis plus d'un an, en tirant parti de l'API d'OpenAI pour consolider le texte des avis clients en résumés plus faciles à gérer et à lire. Mais Shamim Mohammad, directeur de l'information de l'entreprise, a déclaré que son équipe avait également appliqué la technologie à d'autres domaines.

Parmi eux, l’imagerie automobile peut contribuer à améliorer l’expérience client. Il a déclaré que l'IA peut optimiser les images de chaque véhicule qu'ils ajoutent à leur inventaire, qui varie de 50 000 à 60 000 véhicules à tout moment. « Nous rendons chaque image aussi réaliste que possible sans sacrifier l'efficacité. » Par exemple, leurs data scientists ont créé un modèle de « balayeuse numérique » en utilisant une image montrant une voiture garée sur un sol propre, remplaçant une photo d'une voiture garée sur un sol sale. sol. "C'est toujours la même voiture, mais les photos sont plus belles, ce qui constitue une meilleure expérience pour les clients."

De même, Rowan Curran, analyste chez Forrester, a déclaré que Nike utilisait l'IA générative pour générer des images de prototypes de produits. "Vous pouvez utiliser le modeleur texte en 3D pour le tester dans l'espace 3D et avoir une idée plus intuitive de son apparence dans le monde réel - le tout en un clin d'œil", a-t-il déclaré.

Les plus grandes récompenses potentielles. Applications

Mohammad a déclaré que la création de code et l'amélioration de l'expérience client sont les principaux domaines dans lesquels les entreprises utilisent aujourd'hui l'IA générative, avec les plus grands retours potentiels en termes d'efficacité accrue.

Gary Jeter, vice-président exécutif et directeur de l'information de TruStone Financial Credit Union, a déclaré que c'est exactement ce que ses développeurs espèrent faire en implémentant OpenAI Codex sur GitHub. De plus, le codage avec l’IA générative fonctionne très bien. Les modèles d'IA générative fonctionnent mieux en matière de codage que le langage humain, car les langages de programmation sont plus structurés, a déclaré Cenkl. "Cela dévoile cette structure, donc ça fonctionne mieux."

CarMax teste le Copilot de GitHub et affirme que les ingénieurs peuvent générer jusqu'à 40 % de code en moins dans certains cas. « L’évolution évolue très rapidement, mais si vous l’utilisez pour créer un logiciel, vous devez vous assurer que vous ne violez pas le droit d’auteur, que vous ne générez pas de faux contenus ou que vous n’intégrez pas de logiciels malveillants. Vous ne pouvez pas insérer ce code sans surveillance.

Curran a déclaré que d'autres domaines sont mûrs pour les applications d'entreprise, tels que la génération de textes marketing, d'images, de conception et la création de meilleurs résumés de données afin que les gens puissent utiliser les données plus efficacement. "Certaines personnes utilisent même ces grands modèles de langage pour nettoyer les données non structurées", a-t-il déclaré. Ensuite, des capacités d'IA générative pourraient commencer à apparaître dans certains logiciels d'entreprise, tels que les logiciels de support technique et les applications Microsoft Office.

Ne faites pas confiance facilement, vérifiez d'abord

Mohammad de CarMax prévient qu'en plus des avantages, les DSI déployant cette technologie doivent comprendre les problèmes potentiels de propriété intellectuelle associés au contenu généré. Les modèles génératifs tels que DALL-E, qui sont formés sur des données Internet, peuvent générer du contenu susceptible de violer le droit d'auteur. C'est pourquoi Getty Images a récemment poursuivi Stability AI en justice pour son outil de génération d'art alimenté par l'IA, Stable Diffusion.

Cette technologie nécessite également une supervision humaine. "Les systèmes comme ChatGPT ne savent pas ce qu'ils créent, et ces systèmes sont très efficaces pour vous faire croire que ce qu'ils disent est exact, même si ce n'est pas le cas", a déclaré Cenkl. Aucune IA ne peut garantir cela, aucun attribut. ou Les informations de référence vous permettent de savoir comment elles sont arrivées à une réponse, et il n'y a aucune interprétabilité IA qui montre pourquoi quelque chose est écrit tel qu'il est. « Vous ne savez pas quelle est la base sous-jacente, vous ne savez pas quelles parties de l'ensemble de formation influencent le modèle, et ce que vous obtenez est purement une analyse basée sur l'ensemble de données existant, vous avez donc non seulement le potentiel pour partialité, mais aussi pour de facto Faux."

Wittmaier est optimiste quant à la technologie, mais pense toujours qu'il s'agit d'une technologie précoce qui pourrait être utilisée pour des déploiements destinés aux clients. À ce stade, a-t-il déclaré, les environnements de suite bureautique, les chatbots de contact client, les fonctions de support technique et la documentation générale ont tous un potentiel à court terme, mais lorsqu'il s'agit de domaines liés à la sécurité dans l'activité d'une entreprise de transport, la réponse est clairement non. Il a déclaré : « Nous avons encore beaucoup à apprendre et à améliorer avant de pouvoir intégrer l'IA générative dans ces domaines sensibles. »

Jeter a des préoccupations similaires. Alors que son équipe a utilisé ChatGPT pour identifier les correctifs de code et les déployer sur le site en 30 minutes, « sans ChatGPT, cela aurait pris beaucoup plus de temps », et il pense que ChatGPT est également utile pour rédiger les termes et conditions des contrats, mais ceux-ci ne l'ont pas encore été. été entièrement vérifiée. "Nous n'exposerons aucune IA générative à des membres extérieurs, et TruStone ne sera pas à l'avant-garde dans ce domaine." Il a ajouté que lorsque TruStone commencera enfin à utiliser la technologie pour apporter des avantages à ses membres, ce sera à travers l'humain et la modération automatisée surveille les conversations pour protéger les membres et la marque.

Kellen de l'Université de Californie à San Diego, a déclaré qu'aujourd'hui, la clé d'un déploiement réussi reste d'avoir des humains au courant pour vérifier l'exactitude et la conformité du contenu généré. "S'assurer que les machines prennent les bonnes décisions sera un point de litige important, et il faudra beaucoup de temps avant que les organisations utilisent la technologie pour faire quoi que ce soit à haut risque - comme le diagnostic médical. Mais l'IA générative peut être très utile pour générer des choses. comme les résumés de révision, en supposant qu'il y ait une supervision humaine. Cela nous ralentit un peu, mais c'est la bonne chose à faire. Finalement, nous trouverons des moyens automatisés pour garantir la qualité. Mais pour l'instant, vous devez avoir un processus de révision. assurez-vous que le contenu généré est exact. »

En plus de l’exactitude, un autre risque bien documenté est le potentiel de biais dans les modèles introduits à partir du centre de données de formation. Kellen dit que cela est particulièrement problématique lorsque l'IA générative utilise du contenu provenant d'Internet, comme le fait ChatGPT. Mais lorsque vous entraînez le modèle sur les données de votre propre entreprise privée, vous pouvez vérifier les biais potentiels et cela ne pose peut-être pas de problème. Il a déclaré : "Plus vous approfondissez l'entreprise et plus les catégories de données sont restreintes et banales, plus l'IA générative sera utile."

Une chose que vous devez savoir sur les grands modèles de langage, a déclaré Cenkl : c'est que ces machines fonctionnent d'une manière ou d'une autre, dans la mesure où il est un expert. "Ils ne comprennent pas, mais ils sont très bons en informatique."

Changements dans les responsabilités professionnelles et les rôles

"La technologie peut améliorer les choses, mais elle crée aussi beaucoup de travail supplémentaire pour nous." cette génération de Formule AI est différente. "C'est excitant car cela supprime certaines des choses que nous n'aimons pas faire et nous rend plus intelligents, et cela rend les humains plus forts

."

Mais Curran a souligné que l’IA générative ne remplacera complètement aucun rôle à court terme. "Cela peut réduire le nombre de personnes nécessaires pour remplir un rôle, tel que le développement de contenu, la gestion des informations sur les produits ou le développement de logiciels, mais il y aura toujours un être humain impliqué", a-t-il déclaré, ajoutant que la technologie de l'IA générative peut écrire et résumer. , l'intelligence humaine est toujours nécessaire pour garantir la qualité du contenu et contrôler le contenu généré afin de l'améliorer.

Commencer

Kellen dit que le moment est venu d'accélérer la technologie de l'IA générative et de commencer à expérimenter. Il a déclaré : « Les DSI doivent résoudre ce problème avant d'être désorientés par les fournisseurs qui intègrent la technologie dans leurs produits logiciels d'entreprise. Si vous continuez à retarder l'année prochaine, vous serez en retard

Curran a déclaré qu'il est important de comprendre. la technologie et l'explorer en profondeur plutôt que de lancer un débat public autour de ChatGPT, afin de comprendre que la technologie est bien plus complexe que l'application. Commencez ensuite à réfléchir à la manière dont l’IA générative pourrait être utilisée pour améliorer l’efficacité ou la qualité des processus existants. Enfin, demandez-vous de quel type de fonctionnalité vous avez besoin et si vous l'obtiendrez auprès d'un fournisseur ou si vous la créerez vous-même.

La prochaine étape consiste à tester la technologie et à envisager des cas d'utilisation potentiels. "Beaucoup de vos systèmes, qu'ils utilisent des données structurées ou non, auront au moins certains composants de langage naturel et d'interfaces conversationnelles", a déclaré Cenkl. "Pensez aux données dont vous disposez et aux technologies qui peuvent le faire. améliorer quelles parties de celui-ci », puis démontrer son potentiel. Par exemple, Jeter a déclaré avoir généré un modèle de termes et conditions et l'avoir envoyé aux services de conformité pour montrer comment ils utilisaient la technologie.

Curran a déclaré que les modèles d'IA générative sont volumineux et que la formation d'un modèle à partir de zéro est extrêmement coûteuse, la meilleure façon de commencer est donc d'utiliser l'un des services cloud. Par exemple, CarMax utilise le service Microsoft Azure OpenAI avec GPT 3.5. « Les données que nous chargeons nous appartiennent – ​​elles ne sont pas partagées avec d'autres, et nous pouvons disposer de grandes quantités de données et les traiter rapidement pour exécuter nos modèles », a déclaré Mohammad. « Cela peut être utile si vous avez une petite équipe ou une entreprise. problème. Si vous souhaitez apprendre la technologie de l’IA générative, essayez-la.”

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:51cto.com
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal