Table des matières
Les recherches actuelles d'Anthropic en matière de sécurité
Interprétabilité des mécanismes
Supervision évolutive
Apprenez le processus, pas obtenez le résultat
Comprendre la généralisation
Conclusion
Maison Périphériques technologiques IA Google a dépensé 400 millions de dollars pour Anthropic : les calculs d'entraînement des modèles d'IA ont été multipliés par 1 000 en 5 ans !

Google a dépensé 400 millions de dollars pour Anthropic : les calculs d'entraînement des modèles d'IA ont été multipliés par 1 000 en 5 ans !

Apr 11, 2023 pm 07:27 PM
人工智能 训练

Depuis la découverte de la loi de mise à l'échelle, les gens pensaient que le développement de l'intelligence artificielle serait aussi rapide qu'une fusée.

En 2019, la multimodalité, le raisonnement logique, la vitesse d'apprentissage, l'apprentissage par transfert de tâches croisées et la mémoire à long terme auront encore des « murs » qui ralentissent ou arrêtent les progrès de l'intelligence artificielle. Au fil des années, le « mur » du raisonnement multimodal et logique est tombé.

Compte tenu de cela, la plupart des gens sont de plus en plus convaincus que les progrès rapides de l’intelligence artificielle vont se poursuivre plutôt que de stagner ou de se stabiliser.

Maintenant, les performances des systèmes d'intelligence artificielle sur un grand nombre de tâches sont proches du niveau humain, et le coût de formation de ces systèmes est bien inférieur à celui des « grands projets scientifiques » tels que le télescope spatial Hubble et le Grand collisionneur de hadrons, il a donc déclaré que l'IA avait un énorme potentiel pour le développement futur.

Cependant, les risques de sécurité induits par le développement deviennent de plus en plus importants.

Concernant les problèmes de sécurité de l'intelligence artificielle, Anthropic a analysé trois possibilités :

Google a dépensé 400 millions de dollars pour Anthropic : les calculs dentraînement des modèles dIA ont été multipliés par 1 000 en 5 ans !

Dans des circonstances optimistes, la possibilité qu'une intelligence artificielle avancée entraîne des risques catastrophiques en raison de failles de sécurité est très faible. Les technologies de sécurité déjà développées, telles que l’apprentissage par renforcement à partir du feedback humain (RLHF) et l’intelligence artificielle constitutionnelle (CAI), sont largement suffisantes pour faire face aux risques.

Les principaux risques sont une utilisation abusive intentionnelle et des dommages potentiels causés par l'automatisation généralisée et l'évolution de la dynamique du pouvoir international, etc., qui nécessiteront des recherches approfondies de la part des laboratoires d'IA et de tiers, tels que les universités et les institutions de la société civile, pour aider les décideurs politiques. gérer certains des risques structurels potentiels induits par l’intelligence artificielle avancée.

Ni bons ni mauvais scénarios, les risques catastrophiques sont une issue possible, voire raisonnable, du développement de l'intelligence artificielle avancée, et nous aurons besoin d'efforts scientifiques et techniques substantiels pour éviter ces risques, comme ceux fournis par Anthropic. « boxe combinée », on peut éviter les risques.

Google a dépensé 400 millions de dollars pour Anthropic : les calculs dentraînement des modèles dIA ont été multipliés par 1 000 en 5 ans !

Les recherches actuelles d'Anthropic en matière de sécurité

Anthropic travaille actuellement dans diverses directions, principalement divisées en trois domaines : les capacités de l'IA en matière d'écriture, de traitement ou de génération d'images, de jeux, etc. ; Développement de nouveaux algorithmes pour entraîner les les capacités d'alignement des systèmes d'intelligence artificielle ; évaluer et comprendre si le système d'intelligence artificielle est réellement aligné, quelle est son efficacité et ses capacités d'application.

Anthropic a lancé les projets suivants pour étudier comment former une intelligence artificielle sûre.

Interprétabilité des mécanismes

L'interprétabilité des mécanismes, c'est-à-dire essayer de procéder à l'ingénierie inverse d'un réseau neuronal en un algorithme que les humains peuvent comprendre, est similaire à l'ingénierie inverse d'un programme informatique inconnu et potentiellement dangereux.

Anthropic espère que cela pourra nous permettre de faire quelque chose de similaire à la « révision du code », qui peut examiner le modèle et identifier les aspects dangereux pour fournir de solides garanties de sécurité.

C'est une question très difficile, mais pas aussi impossible qu'il y paraît.

D'une part, les modèles de langage sont des programmes informatiques volumineux et complexes (le phénomène de « superposition » rend les choses plus difficiles). D’un autre côté, certains signes indiquent que cette approche est plus facile à résoudre qu’on pourrait le penser à première vue. Anthropic a étendu avec succès cette approche aux petits modèles de langage, a même découvert un mécanisme qui semble piloter l'apprentissage contextuel et a une meilleure compréhension des mécanismes responsables de la mémoire.

La recherche sur l’interprétabilité d’Antropic veut combler les lacunes laissées par d’autres types de science de la permutation. Par exemple, ils soutiennent que l’une des choses les plus précieuses que la recherche sur l’interprétabilité peut produire est la capacité d’identifier si un modèle est faussement aligné.

À bien des égards, le problème de la cohérence technique est inextricablement lié au problème de la détection des mauvais comportements dans les modèles d'IA.

Si un mauvais comportement peut être détecté de manière robuste dans de nouvelles situations (par exemple en « lisant dans les pensées du modèle »), alors nous pouvons trouver de meilleures façons de former des modèles qui ne présentent pas ces modes de défaillance.

Anthropic estime qu'en comprenant mieux le fonctionnement détaillé des réseaux neuronaux et l'apprentissage, une plus large gamme d'outils peut être développée dans la recherche de la sécurité.

Supervision évolutive

La transformation de modèles de langage en systèmes d'intelligence artificielle unifiés nécessite de grandes quantités de retours de haute qualité pour guider leur comportement. La raison principale est que les humains ne sont peut-être pas en mesure de fournir les informations précises nécessaires pour entraîner correctement le modèle afin d'éviter les comportements nuisibles dans un large éventail d'environnements.

Il se pourrait que les humains soient trompés par les systèmes d'IA et qu'ils fournissent des commentaires qui reflètent leurs besoins réels (par exemple, en fournissant accidentellement des commentaires positifs pour des suggestions trompeuses). Et les humains ne peuvent pas le faire à grande échelle, ce qui pose le problème d’une supervision évolutive et est au cœur de la formation de systèmes d’IA sûrs et cohérents.

Par conséquent, Anthropic estime que la seule façon d'assurer la supervision nécessaire est de laisser le système d'intelligence artificielle se superviser partiellement ou d'aider les humains à se superviser. D’une certaine manière, une petite quantité de supervision humaine de haute qualité est amplifiée en une grande quantité de supervision de haute qualité par l’intelligence artificielle.

Google a dépensé 400 millions de dollars pour Anthropic : les calculs dentraînement des modèles dIA ont été multipliés par 1 000 en 5 ans !

Cette idée s'est révélée prometteuse grâce à des techniques telles que le RLHF et l'IA constitutionnelle, les modèles de langage ont beaucoup appris sur les valeurs humaines lors de la pré-formation, et on peut s'attendre à ce que des modèles plus grands en apprennent davantage sur l'humain. valeurs Avoir une compréhension plus précise.

Une autre caractéristique clé de la supervision évolutive, en particulier des techniques comme la CAI, est qu'elle permet une équipe rouge automatisée (c'est-à-dire une formation contradictoire). Autrement dit, ils pourraient automatiquement générer des entrées potentiellement problématiques dans les systèmes d’IA, voir comment ils réagissent, puis les entraîner automatiquement à se comporter de manière plus honnête et plus inoffensive.

En plus du CAI, il existe une variété de méthodes de supervision évolutives telles que la supervision assistée par l'homme, le débat IA-IA, l'équipe rouge RL multi-agents et l'évaluation de la génération de modèles de création. Grâce à ces méthodes, les modèles peuvent mieux comprendre les valeurs humaines et se comporter de manière plus conforme aux valeurs humaines. De cette façon, Anthropic peut former des systèmes de sécurité plus puissants.

Apprenez le processus, pas obtenez le résultat

Une façon d'apprendre une nouvelle tâche consiste à faire des essais et des erreurs. Si vous savez quel est le résultat final souhaité, vous pouvez continuer à essayer de nouvelles stratégies jusqu’à ce que vous réussissiez. Anthropic appelle cela « l'apprentissage axé sur les résultats ».

Dans ce processus, la stratégie de l'agent est entièrement déterminée par le résultat souhaité, et aura tendance à choisir des stratégies à faible coût pour lui permettre d'atteindre cet objectif.

Une meilleure façon d'apprendre est généralement de laisser les experts vous guider et comprendre leur processus de réussite. Pendant les séances d’entraînement, votre réussite n’a peut-être pas tellement d’importance, car vous pouvez vous concentrer sur l’amélioration de votre approche.

Au fur et à mesure que vous progressez, vous pouvez consulter votre coach pour poursuivre de nouvelles stratégies et voir si cela fonctionne mieux pour vous. C'est ce qu'on appelle « l'apprentissage orienté processus ». Dans l’apprentissage orienté processus, le résultat final n’est pas le but, mais la maîtrise du processus est la clé.

De nombreuses préoccupations concernant la sécurité des systèmes avancés d'intelligence artificielle, au moins au niveau conceptuel, peuvent être résolues en formant ces systèmes de manière orientée processus.

Les experts humains continueront à comprendre les étapes individuelles suivies par les systèmes d'IA, et pour que ces processus soient encouragés, ils doivent expliquer leurs raisons aux humains.

Les systèmes d'IA ne seront pas récompensés pour leur réussite de manière imprévisible ou nuisible, car ils ne seront récompensés qu'en fonction de l'efficacité et de la compréhensibilité de leurs processus.

De cette façon, ils ne sont pas récompensés pour la poursuite de sous-objectifs problématiques tels que l'acquisition de ressources ou la tromperie, car les humains ou leurs agents fourniraient des commentaires négatifs sur son processus d'acquisition pendant la formation.

Anthropic estime que « l'apprentissage orienté processus » peut être le moyen le plus prometteur de former des systèmes sûrs et transparents, et c'est aussi la méthode la plus simple.

Comprendre la généralisation

Le travail d'interprétabilité mécanique procède à l'ingénierie inverse des calculs effectués par les réseaux de neurones. Anthropic a également cherché à acquérir une compréhension plus détaillée des procédures de formation pour les grands modèles de langage (LLM).

Les LLM ont démontré une variété de nouveaux comportements surprenants, allant d'une créativité incroyable à l'autoprotection en passant par la tromperie. Tous ces comportements proviennent de données d'entraînement, mais le processus est compliqué : le modèle est d'abord « pré-entraîné » sur une grande quantité de texte original, apprenant un large éventail de représentations et simulant les capacités de différents agents. Ils sont ensuite affinés de différentes manières, dont certaines peuvent avoir des conséquences surprenantes.

En raison d'un surparamétrage lors de la phase de mise au point, le modèle appris dépend fortement du biais implicite de la pré-formation, et ce biais implicite provient du réseau complexe construit en pré-formation de la plupart des connaissances mondiales. . Réseau de représentation.

Lorsqu'un modèle se comporte de manière inquiétante, par exemple lorsqu'il agit comme une IA trompeuse, est-il simplement en train de ruminer de manière inoffensive une séquence d'entraînement presque identique ? Ou est-ce que ce comportement (et même les croyances et les valeurs qui y conduisent) est devenu tellement partie intégrante de la conception du modèle d’un assistant IA qu’il l’applique dans différents contextes ?

Anthropic travaille sur une technique qui tente de retracer la sortie du modèle jusqu'aux données d'entraînement afin d'identifier des indices importants qui peuvent aider à comprendre ce comportement.

Test des modes de défaillance dangereux

Un problème clé est que l'IA avancée peut développer des comportements émergents nuisibles, tels que des capacités de tromperie ou de planification stratégique, qui ne seraient pas possibles dans des systèmes plus petits et moins performants.

Avant que ce problème ne devienne une menace immédiate, Anthropic estime que la façon de le prédire est de construire un environnement. Ils ont donc délibérément intégré ces propriétés dans des modèles à petite échelle. Parce que ces modèles ne sont pas assez puissants pour constituer un danger, ils peuvent être isolés et étudiés.

Anthropic s'intéresse particulièrement au comportement des systèmes d'IA dotés d'une « conscience de la situation » - par exemple, lorsqu'ils réalisent qu'ils sont une IA parlant à un humain dans l'environnement d'entraînement, comment cela affecte leur comportement d'entraînement pendant la période ? Les systèmes d’IA pourraient-ils devenir trompeurs ou développer des objectifs étonnamment sous-optimaux ?

Idéalement, ils aimeraient construire des modèles quantitatifs détaillés de la façon dont ces tendances évoluent à grande échelle, afin que les modes de défaillance soudaines et dangereuses puissent être prédits à l'avance.

Dans le même temps, Anthropic s'inquiète également des risques associés à la recherche elle-même :

Si la recherche est menée sur un modèle plus petit, il est peu probable qu'il y ait des risques sérieux si elle est menée sur un modèle plus petit ; modèle plus grand avec de plus grandes capacités, il n'y a pas de risques sérieux. Il y a des risques évidents. Anthropic n’a donc pas l’intention de mener ce type de recherche sur des modèles susceptibles de causer de graves dommages.

Impact social et évaluation

Un pilier clé de la recherche anthropique est d'évaluer et de comprendre de manière critique les capacités, les limites et les impacts sociaux potentiels des systèmes d'intelligence artificielle en établissant des outils, des mesures et leur impact social potentiel.

Par exemple, Anthropic a publié des recherches analysant la prévisibilité des grands modèles de langage. Ils examinent la prévisibilité et l'imprévisibilité de haut niveau de ces modèles et analysent comment cette propriété peut conduire à des comportements nuisibles.

Dans ce travail, ils étudient les approches des modèles de langage d'équipe rouge pour trouver et réduire les dangers en sondant la sortie du modèle à différentes échelles de modèle. Récemment, ils ont découvert que les modèles linguistiques actuels peuvent suivre des instructions et réduire les préjugés et les stéréotypes.

Anthropic est très préoccupé par l'impact de l'application rapide des systèmes d'intelligence artificielle sur la société à court, moyen et long terme.

En menant aujourd’hui des recherches rigoureuses sur l’impact de l’IA, ils visent à fournir aux décideurs politiques et aux chercheurs les arguments et les outils dont ils ont besoin pour contribuer à atténuer les crises sociales potentiellement majeures et garantir que les bénéfices de l’IA parviennent aux populations.

Conclusion

L'intelligence artificielle aura un impact sans précédent sur le monde dans les dix prochaines années. La croissance exponentielle de la puissance de calcul et les améliorations prévisibles des capacités de l'intelligence artificielle indiquent que la technologie du futur sera bien plus avancée que celle d'aujourd'hui.

Cependant, nous ne comprenons pas encore clairement comment garantir que ces systèmes puissants sont étroitement intégrés aux valeurs humaines et ne pouvons donc pas garantir que le risque de défaillance catastrophique sera minimisé. Nous devons donc toujours nous préparer à des situations moins optimistes.

Grâce à des recherches empiriques sous de multiples angles, le « punch combiné » des travaux de sécurité fournis par Anthropic semble pouvoir nous aider à résoudre les problèmes de sécurité de l'intelligence artificielle.

Ces recommandations de sécurité d'Anthropic nous disent :

« Pour améliorer notre compréhension de la façon dont les systèmes d'IA apprennent et se généralisent au monde réel, développer des techniques de supervision et de révision des systèmes d'IA évolutives, créer des systèmes d'IA transparents et explicables, former Les systèmes d'IA doivent suivre les processus de sécurité plutôt que de courir après les résultats, analyser les modes de défaillance potentiellement dangereux de l'IA et comment les prévenir, évaluer l'impact social de l'IA pour guider les politiques et la recherche, et plus encore. scène pour une défense parfaite contre l’intelligence artificielle, mais Anthropic a montré la voie à suivre pour tout le monde.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Commandes de chat et comment les utiliser
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Jun 28, 2024 am 03:51 AM

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Assistant de codage d'IA augmenté par le contexte utilisant Rag et Sem-Rag Assistant de codage d'IA augmenté par le contexte utilisant Rag et Sem-Rag Jun 10, 2024 am 11:08 AM

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Le réglage fin peut-il vraiment permettre au LLM d'apprendre de nouvelles choses : l'introduction de nouvelles connaissances peut amener le modèle à produire davantage d'hallucinations Le réglage fin peut-il vraiment permettre au LLM d'apprendre de nouvelles choses : l'introduction de nouvelles connaissances peut amener le modèle à produire davantage d'hallucinations Jun 11, 2024 pm 03:57 PM

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Sept questions d'entretien technique Cool GenAI et LLM Sept questions d'entretien technique Cool GenAI et LLM Jun 07, 2024 am 10:06 AM

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

La version Kuaishou de Sora 'Ke Ling' est ouverte aux tests : génère plus de 120 s de vidéo, comprend mieux la physique et peut modéliser avec précision des mouvements complexes La version Kuaishou de Sora 'Ke Ling' est ouverte aux tests : génère plus de 120 s de vidéo, comprend mieux la physique et peut modéliser avec précision des mouvements complexes Jun 11, 2024 am 09:51 AM

Quoi? Zootopie est-elle concrétisée par l’IA domestique ? Avec la vidéo est exposé un nouveau modèle de génération vidéo domestique à grande échelle appelé « Keling ». Sora utilise une voie technique similaire et combine un certain nombre d'innovations technologiques auto-développées pour produire des vidéos qui comportent non seulement des mouvements larges et raisonnables, mais qui simulent également les caractéristiques du monde physique et possèdent de fortes capacités de combinaison conceptuelle et d'imagination. Selon les données, Keling prend en charge la génération de vidéos ultra-longues allant jusqu'à 2 minutes à 30 ips, avec des résolutions allant jusqu'à 1080p, et prend en charge plusieurs formats d'image. Un autre point important est que Keling n'est pas une démo ou une démonstration de résultats vidéo publiée par le laboratoire, mais une application au niveau produit lancée par Kuaishou, un acteur leader dans le domaine de la vidéo courte. De plus, l'objectif principal est d'être pragmatique, de ne pas faire de chèques en blanc et de se mettre en ligne dès sa sortie. Le grand modèle de Ke Ling est déjà sorti à Kuaiying.

Cinq écoles d'apprentissage automatique que vous ne connaissez pas Cinq écoles d'apprentissage automatique que vous ne connaissez pas Jun 05, 2024 pm 08:51 PM

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Jul 25, 2024 am 06:42 AM

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Les startups d'IA ont collectivement transféré leurs emplois vers OpenAI, et l'équipe de sécurité s'est regroupée après le départ d'Ilya ! Les startups d'IA ont collectivement transféré leurs emplois vers OpenAI, et l'équipe de sécurité s'est regroupée après le départ d'Ilya ! Jun 08, 2024 pm 01:00 PM

" sept péchés capitaux" » Dissiper les rumeurs : selon des informations divulguées et des documents obtenus par Vox, la haute direction d'OpenAI, y compris Altman, était bien au courant de ces dispositions de récupération de capitaux propres et les a approuvées. De plus, OpenAI est confronté à un problème grave et urgent : la sécurité de l’IA. Les récents départs de cinq employés liés à la sécurité, dont deux de ses employés les plus en vue, et la dissolution de l'équipe « Super Alignment » ont une nouvelle fois mis les enjeux de sécurité d'OpenAI sur le devant de la scène. Le magazine Fortune a rapporté qu'OpenA

See all articles