Maison Périphériques technologiques IA Microsoft ouvre le modèle de base d'apprentissage automatique Hugging Face aux utilisateurs d'Azure pour les aider à effectuer diverses tâches de science des données

Microsoft ouvre le modèle de base d'apprentissage automatique Hugging Face aux utilisateurs d'Azure pour les aider à effectuer diverses tâches de science des données

Apr 11, 2023 pm 08:49 PM
机器学习 微软 azure

Le 9 mars, Microsoft a annoncé l'année dernière qu'il lancerait une coopération approfondie avec Hugging Face, une plateforme open source de traitement du langage naturel (NLP). Après avoir créé Hugging Face Endpoints, un service d'inférence d'apprentissage automatique optimisé par Azure ML Managed Endpoints, Microsoft a annoncé aujourd'hui que le modèle sous-jacent de Hugging Face est désormais disponible pour Azure Machine Learning.

Microsoft ouvre le modèle de base d'apprentissage automatique Hugging Face aux utilisateurs d'Azure pour les aider à effectuer diverses tâches de science des données

Microsoft a déclaré lors de l'Azure Open Source Day qu'il avait apporté des modèles de base à Azure Machine Learning sous la forme d'une version d'aperçu publique. Les utilisateurs de la plateforme Azure peuvent désormais s’appuyer sur ces modèles fondamentaux open source et les étendre pour répondre à leurs besoins.

Microsoft ouvre le modèle de base d'apprentissage automatique Hugging Face aux utilisateurs d'Azure pour les aider à effectuer diverses tâches de science des données

Microsoft ouvre le modèle de base d'apprentissage automatique Hugging Face aux utilisateurs d'Azure pour les aider à effectuer diverses tâches de science des données

Microsoft ouvre le modèle de base d'apprentissage automatique Hugging Face aux utilisateurs d'Azure pour les aider à effectuer diverses tâches de science des données

Microsoft ouvre le modèle de base d'apprentissage automatique Hugging Face aux utilisateurs d'Azure pour les aider à effectuer diverses tâches de science des données

IT House a traduit une partie du billet de blog de Microsoft comme suit :

Avec cette nouvelle fonctionnalité, les organisations peuvent accéder à des environnements sélectionnés et à l'infrastructure Azure AI.

Les professionnels d'Azure Machine Learning peuvent affiner et déployer des modèles de base à partir de plusieurs référentiels open source, en utilisant les composants et les pipelines Azure Machine Learning pour effectuer facilement leurs tâches de science des données.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Cet article vous amènera à comprendre SHAP : explication du modèle pour l'apprentissage automatique Cet article vous amènera à comprendre SHAP : explication du modèle pour l'apprentissage automatique Jun 01, 2024 am 10:58 AM

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Jun 03, 2024 pm 01:25 PM

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

Microsoft publie la mise à jour cumulative Win11 août : amélioration de la sécurité, optimisation de l'écran de verrouillage, etc. Microsoft publie la mise à jour cumulative Win11 août : amélioration de la sécurité, optimisation de l'écran de verrouillage, etc. Aug 14, 2024 am 10:39 AM

Selon les informations de ce site du 14 août, lors de la journée d'événement Patch Tuesday d'aujourd'hui, Microsoft a publié des mises à jour cumulatives pour les systèmes Windows 11, notamment la mise à jour KB5041585 pour 22H2 et 23H2 et la mise à jour KB5041592 pour 21H2. Après l'installation de l'équipement mentionné ci-dessus avec la mise à jour cumulative d'août, les changements de numéro de version attachés à ce site sont les suivants : Après l'installation de l'équipement 21H2, le numéro de version est passé à Build22000.314722H2. le numéro de version est passé à Build22621.403723H2. Après l'installation de l'équipement, le numéro de version est passé à Build22631.4037. Le contenu principal de la mise à jour KB5041585 pour Windows 1121H2 est le suivant : Amélioration : Amélioré.

La fenêtre contextuelle plein écran de Microsoft exhorte les utilisateurs de Windows 10 à se dépêcher et à passer à Windows 11 La fenêtre contextuelle plein écran de Microsoft exhorte les utilisateurs de Windows 10 à se dépêcher et à passer à Windows 11 Jun 06, 2024 am 11:35 AM

Selon l'actualité du 3 juin, Microsoft envoie activement des notifications en plein écran à tous les utilisateurs de Windows 10 pour les encourager à passer au système d'exploitation Windows 11. Ce déplacement concerne les appareils dont les configurations matérielles ne prennent pas en charge le nouveau système. Depuis 2015, Windows 10 occupe près de 70 % des parts de marché, établissant ainsi sa domination en tant que système d'exploitation Windows. Cependant, la part de marché dépasse largement la part de marché de 82 %, et la part de marché dépasse largement celle de Windows 11, qui sortira en 2021. Même si Windows 11 est lancé depuis près de trois ans, sa pénétration sur le marché est encore lente. Microsoft a annoncé qu'il mettrait fin au support technique de Windows 10 après le 14 octobre 2025 afin de se concentrer davantage sur

Cinq écoles d'apprentissage automatique que vous ne connaissez pas Cinq écoles d'apprentissage automatique que vous ne connaissez pas Jun 05, 2024 pm 08:51 PM

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Flash Attention est-il stable ? Meta et Harvard ont constaté que les écarts de poids de leur modèle fluctuaient de plusieurs ordres de grandeur. Flash Attention est-il stable ? Meta et Harvard ont constaté que les écarts de poids de leur modèle fluctuaient de plusieurs ordres de grandeur. May 30, 2024 pm 01:24 PM

MetaFAIR s'est associé à Harvard pour fournir un nouveau cadre de recherche permettant d'optimiser le biais de données généré lors de l'apprentissage automatique à grande échelle. On sait que la formation de grands modèles de langage prend souvent des mois et utilise des centaines, voire des milliers de GPU. En prenant comme exemple le modèle LLaMA270B, sa formation nécessite un total de 1 720 320 heures GPU. La formation de grands modèles présente des défis systémiques uniques en raison de l’ampleur et de la complexité de ces charges de travail. Récemment, de nombreuses institutions ont signalé une instabilité dans le processus de formation lors de la formation des modèles d'IA générative SOTA. Elles apparaissent généralement sous la forme de pics de pertes. Par exemple, le modèle PaLM de Google a connu jusqu'à 20 pics de pertes au cours du processus de formation. Le biais numérique est à l'origine de cette imprécision de la formation,

IA explicable : Expliquer les modèles IA/ML complexes IA explicable : Expliquer les modèles IA/ML complexes Jun 03, 2024 pm 10:08 PM

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises

Apprentissage automatique en C++ : un guide pour la mise en œuvre d'algorithmes d'apprentissage automatique courants en C++ Apprentissage automatique en C++ : un guide pour la mise en œuvre d'algorithmes d'apprentissage automatique courants en C++ Jun 03, 2024 pm 07:33 PM

En C++, la mise en œuvre d'algorithmes d'apprentissage automatique comprend : Régression linéaire : utilisée pour prédire des variables continues. Les étapes comprennent le chargement des données, le calcul des poids et des biais, la mise à jour des paramètres et la prédiction. Régression logistique : utilisée pour prédire des variables discrètes. Le processus est similaire à la régression linéaire, mais utilise la fonction sigmoïde pour la prédiction. Machine à vecteurs de support : un puissant algorithme de classification et de régression qui implique le calcul de vecteurs de support et la prédiction d'étiquettes.

See all articles