


Distance numérique basée sur l'apprentissage automatique : la distance entre les points dans l'espace
Cet article est réimprimé du compte public WeChat « Vivre à l'ère de l'information ». L'auteur vit à l'ère de l'information. Pour réimprimer cet article, veuillez contacter le compte public Vivre à l’ère de l’information.
Dans l'apprentissage automatique, un concept de base est de savoir comment juger la différence entre deux échantillons, afin de pouvoir évaluer la similarité et les informations de catégorie entre les deux échantillons. La mesure permettant de juger de cette similarité est la distance entre deux échantillons dans l'espace des caractéristiques.
Il existe de nombreuses méthodes de mesure basées sur différentes caractéristiques des données. De manière générale, pour deux échantillons de données x, y, définissez une fonction d(x, y). Si elle est définie comme la distance entre les deux échantillons, alors d(x, y) doit satisfaire les propriétés de base suivantes :
- .
- Non-négativité : d(x,y)>=0
- Identité : d(x,y)=0 ⇔ x=y
- Symétrie : d(x,y)=d(y, x)
- Triangle inégalité : d(x, y)
De manière générale, les mesures de distance courantes incluent : la distance des points dans l'espace, la chaîne. Il existe quatre types de distance, la similarité entre ensembles et la distance entre les distributions de variables/concepts.
Aujourd'hui, nous présenterons d'abord la distance des points les plus couramment utilisés dans l'espace.
La distance entre les points dans l'espace comprend les types suivants :
1. Distance euclidienne
Il ne fait aucun doute que la distance euclidienne est la distance la plus familière aux gens. distance entre. Les élèves qui ont étudié les mathématiques au collège savent tous comment calculer la distance entre deux points du système de coordonnées cartésiennes dans l'espace à deux dimensions. La formule de calcul est :
2. Manhattan Distance
La distance de Manhattan est aussi appelée distance de taxi Son concept vient de Manhattan, New York, qui compte de nombreux blocs horizontaux et verticaux, dans ce genre de quartier,. si un chauffeur de taxi veut marcher d'un point à un autre, il est inutile de calculer la distance en ligne droite, car le taxi ne peut pas survoler les bâtiments. Par conséquent, cette distance est généralement calculée en soustrayant et en additionnant respectivement les distances est-ouest et nord-sud de deux points. Il s’agit de la distance réelle que le taxi doit parcourir.
Comme le montre la figure, la ligne rouge et la ligne jaune sont les distances de Manhattan de deux chemins différents. Mathématiquement, la méthode de calcul de la distance de Manhattan dans l'espace bidimensionnel est la suivante :
3 Distance de Chebyshev (distance de Chebyshev)
La distance de Chebyshev est définie comme la différence numérique de chaque coordonnée entre deux points. .valeur maximale.
L'exemple le plus intuitif est le roi aux échecs, car il peut se déplacer latéralement, en ligne droite et en diagonale, mais il ne peut se déplacer que d'une case à la fois, donc la distance de Chebyshev est lorsqu'il doit se déplacer vers une autre. distance minimale requise pour la grille.
4. Distance Minkowski
La distance Minkowski elle-même n'est pas une distance spéciale, mais une combinaison de plusieurs distances (distance de Manhattan, distance euclidienne, distance de Chebyshev) combinées en une seule formule.
Quand p=1, vous pouvez voir que
est la distance de Manhattan à ce moment.
Quand p=2, vous pouvez voir que
est la distance euclidienne à ce moment.
Quand p=∞, vous pouvez voir que
est la distance de Chebyshev.
5. Distance euclidienne standardisée
La distance euclidienne peut mesurer la distance en ligne droite entre deux points, mais dans certains cas, elle peut être affectée par différentes unités. Par exemple, s’il y a en même temps une différence de hauteur de 5 mm et une différence de poids de 5 kg, la perception peut être complètement différente. Si l'on souhaite regrouper trois modèles, leurs attributs respectifs sont les suivants :
A : 65000000 mg (soit 65 kg), 1,74 m
B : 60000000 mg (soit 60 kg), 1,70 m
C : 65000000 mg ( soit 65 kg), 1,40 mètres
Selon notre compréhension normale, A et B sont des modèles avec de meilleures silhouettes et devraient être classés dans la même catégorie. Cependant, lors du calcul dans les unités ci-dessus, on constate que la différence entre A et B est supérieure à la différence entre A et C. La raison en est que les différentes unités de mesure des attributs conduisent à des différences numériques excessives. Si les mêmes données sont modifiées dans une autre unité.
A : 65 kg, 174 cm
B : 60 kg, 170 cm
C : 65 kg, 140 cm
Nous obtiendrons ensuite le résultat auquel nous pensions, en classant A et B dans la même catégorie. Par conséquent, afin d’éviter de telles différences dues à des unités de mesure différentes, nous devons introduire une distance euclidienne standardisée. Dans ce calcul de distance, chaque composante est normalisée sur un intervalle de moyenne et de variance égales.
Supposons que la moyenne (moyenne) de l'ensemble d'échantillons X est m et que l'écart type (écart type) est s, alors la "variable standardisée" de La valeur de - la moyenne du composant) / l'écart type du composant. Après une simple dérivation, nous pouvons obtenir la formule de distance euclidienne standardisée entre deux vecteurs à n dimensions :
Si l'inverse de la variance est considérée comme un poids, cette formule peut être considérée comme une distance euclidienne pondérée (pondérée distance euclidienne). Grâce à cette opération, nous éliminons efficacement les différences entre les différentes unités de poids.
6. Distance de Lance et Williams
C'est un indicateur sans dimension qui surmonte les différences entre la distance de Min et divers indicateurs. est insensible aux grandes valeurs singulières, ce qui le rend particulièrement adapté aux données présentant un biais de planification. Mais cette distance ne prend pas non plus en compte la corrélation entre les variables. Par conséquent, si vous devez considérer la corrélation entre les variables, vous avez toujours besoin de la distance de Mahalanobis.
7. Distance Mahalanobis
Après avoir normalisé les valeurs, n'y aura-t-il aucun problème ? Pas nécessairement. Par exemple, dans un exemple unidimensionnel, s’il existe deux classes, une classe a une moyenne de 0 et une variance de 0,1, et l’autre classe a une moyenne de 5 et une variance de 5. Alors si un point d’une valeur de 2 doit appartenir à quelle catégorie ? Nous pensons intuitivement qu’il doit s’agir de la deuxième catégorie, car il est évidemment peu probable que la première catégorie atteigne numériquement 2. Mais en fait, s’il est calculé à partir de la distance, le chiffre 2 doit appartenir à la première catégorie.
Ainsi, dans une dimension avec une faible variance, une petite différence peut devenir une valeur aberrante. Par exemple, dans la figure ci-dessous, A et B sont à la même distance de l'origine, mais comme l'échantillon entier est distribué le long de l'axe horizontal, le point B est plus susceptible d'être un point de l'échantillon, tandis que le point A est plus probablement une valeur aberrante.
Des problèmes surviendront également lorsque les dimensions ne sont pas indépendantes et distribuées de manière identique. Par exemple, dans la figure ci-dessous, le point A et le point B sont égaux à la distance de l'origine, mais la distribution principale est similaire à. f(x) =x, donc A ressemble plus à une valeur aberrante.
Donc, nous pouvons voir que dans ce cas, la distance euclidienne standardisée aura également des problèmes, nous devons donc introduire la distance de Mahalanobis.
La distance de Mahalanobis fait pivoter les variables en fonction des composantes principales pour rendre les dimensions indépendantes les unes des autres, puis les standardise pour que les dimensions soient également réparties. La composante principale est la direction du vecteur propre, il vous suffit donc de faire pivoter selon la direction du vecteur propre, puis de mettre à l'échelle les temps de valeur propre. Par exemple, une fois l'image ci-dessus transformée, le résultat suivant sera obtenu :
On peut voir que les valeurs aberrantes ont été séparées avec succès.
La distance de Mahalanobis a été proposée par le mathématicien indien Mahalanobis et représente la distance de covariance des données. C'est une méthode efficace pour calculer la similarité de deux ensembles d'échantillons inconnus.
Pour un vecteur multivarié
avec moyenne
et matrice de covariance Σ, sa distance de Mahalanobis (la distance de Mahalanobis d'un seul point de données) est :
Pour le degré de différence entre deux variables aléatoires X et Y qui obéissent à la même distribution et dont la matrice de covariance est Σ, la distance de Mahalanobis entre les points de données x, y est :
Si la matrice de covariance est l'identité matrice, alors la distance de Mahalanobis est simplifiée en distance euclidienne. Si la matrice de covariance est une matrice diagonale, alors la distance de Mahalanobis devient la distance euclidienne standardisée.
8. Distance cosinus
Comme son nom l'indique, la distance cosinus vient du cosinus de l'angle en géométrie. Elle peut être utilisée pour mesurer la différence dans la direction de deux vecteurs, plutôt que la distance ou la longueur. Lorsque la valeur du cosinus est 0, les deux vecteurs sont orthogonaux et l'angle inclus est de 90 degrés. Plus l'angle est petit, plus la valeur du cosinus est proche de 1 et la direction est plus cohérente.
Dans l'espace à N dimensions, la distance cosinus est :
Il convient de souligner que la distance cosinus ne satisfait pas l'inégalité triangulaire.
9. Distance géodésique
La distance géodésique fait à l'origine référence à la distance la plus courte entre les surfaces des sphères. Lorsque l’espace caractéristique est un plan, la distance géodésique est la distance euclidienne. En géométrie non euclidienne, la ligne la plus courte entre deux points de la sphère est le grand arc reliant les deux points. Les côtés des triangles et des polygones de la sphère sont également composés de ces grands arcs.
10. Distance Bray Curtis
La distance Bray Curtis est principalement utilisée en botanique, en écologie et en sciences de l'environnement, et elle peut être utilisée pour calculer les différences entre les échantillons. La formule est :
La valeur est comprise entre [0, 1]. Si les deux coordonnées vectorielles sont 0, alors la valeur n'a aucun sens.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

L'annotation d'images est le processus consistant à associer des étiquettes ou des informations descriptives à des images pour donner une signification et une explication plus profondes au contenu de l'image. Ce processus est essentiel à l’apprentissage automatique, qui permet d’entraîner les modèles de vision à identifier plus précisément les éléments individuels des images. En ajoutant des annotations aux images, l'ordinateur peut comprendre la sémantique et le contexte derrière les images, améliorant ainsi la capacité de comprendre et d'analyser le contenu de l'image. L'annotation d'images a un large éventail d'applications, couvrant de nombreux domaines, tels que la vision par ordinateur, le traitement du langage naturel et les modèles de vision graphique. Elle a un large éventail d'applications, telles que l'assistance aux véhicules pour identifier les obstacles sur la route, en aidant à la détection. et le diagnostic des maladies grâce à la reconnaissance d'images médicales. Cet article recommande principalement de meilleurs outils d'annotation d'images open source et gratuits. 1.Makesens

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

En termes simples, un modèle d’apprentissage automatique est une fonction mathématique qui mappe les données d’entrée à une sortie prédite. Plus précisément, un modèle d'apprentissage automatique est une fonction mathématique qui ajuste les paramètres du modèle en apprenant à partir des données d'entraînement afin de minimiser l'erreur entre la sortie prédite et la véritable étiquette. Il existe de nombreux modèles dans l'apprentissage automatique, tels que les modèles de régression logistique, les modèles d'arbre de décision, les modèles de machines à vecteurs de support, etc. Chaque modèle a ses types de données et ses types de problèmes applicables. Dans le même temps, il existe de nombreux points communs entre les différents modèles, ou il existe une voie cachée pour l’évolution du modèle. En prenant comme exemple le perceptron connexionniste, en augmentant le nombre de couches cachées du perceptron, nous pouvons le transformer en un réseau neuronal profond. Si une fonction noyau est ajoutée au perceptron, elle peut être convertie en SVM. celui-ci

Dans les années 1950, l’intelligence artificielle (IA) est née. C’est à ce moment-là que les chercheurs ont découvert que les machines pouvaient effectuer des tâches similaires à celles des humains, comme penser. Plus tard, dans les années 1960, le Département américain de la Défense a financé l’intelligence artificielle et créé des laboratoires pour poursuivre son développement. Les chercheurs trouvent des applications à l’intelligence artificielle dans de nombreux domaines, comme l’exploration spatiale et la survie dans des environnements extrêmes. L'exploration spatiale est l'étude de l'univers, qui couvre l'ensemble de l'univers au-delà de la terre. L’espace est classé comme environnement extrême car ses conditions sont différentes de celles de la Terre. Pour survivre dans l’espace, de nombreux facteurs doivent être pris en compte et des précautions doivent être prises. Les scientifiques et les chercheurs pensent qu'explorer l'espace et comprendre l'état actuel de tout peut aider à comprendre le fonctionnement de l'univers et à se préparer à d'éventuelles crises environnementales.

Cet article présentera comment identifier efficacement le surajustement et le sous-apprentissage dans les modèles d'apprentissage automatique grâce à des courbes d'apprentissage. Sous-ajustement et surajustement 1. Surajustement Si un modèle est surentraîné sur les données de sorte qu'il en tire du bruit, alors on dit que le modèle est en surajustement. Un modèle surajusté apprend chaque exemple si parfaitement qu'il classera mal un exemple inédit/inédit. Pour un modèle surajusté, nous obtiendrons un score d'ensemble d'entraînement parfait/presque parfait et un score d'ensemble/test de validation épouvantable. Légèrement modifié : "Cause du surajustement : utilisez un modèle complexe pour résoudre un problème simple et extraire le bruit des données. Parce qu'un petit ensemble de données en tant qu'ensemble d'entraînement peut ne pas représenter la représentation correcte de toutes les données."

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.
